IS I Ul BE BN UG BN KT B BN N B BN BE bBE B B BDE B

AD-A213 667

P
SLECTE 33y
0CT 12 1989§§

DC'; E-f&:/

INTEGRATING SYNTAX, SEMANTICS, AND DISCOURSE
DARPA NATURAL LANGUAGE UNDERSTANDING PROGRAM

R&D FINAL REPORT
Unisys Defense Systems
Contract Number: N00014-85-C-0012

Volume I -- TECHNICAL REPORT

ARPA ORDER NUMBER: 5262

PROGRAM CODE NO. NR 049-602 dated 10 August 1984 (433)

CONTRACTOR: Unisys/Defense Systems

CONTRACT AMOUNT: 1,704,901

CONTRACT NO: N00014-85-C-0012

EFFECTIVE DATE OF CONTRACT: 4/29/85

EXPIRATION DATE OF CONTRACT: 9/30/89

PRINCIPAL INVESTIGATOR: Dr. Lynette Hirschman PHONE NO. (215) 648-7554

SHORT TITLE OF WORK: DARPA Natural Language Understanding Program

REPORTING PERIOD: 4/29/85-8/30/89

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Ageucy or the U.S. Government.

e e ——

r'r,wn- r n ~——n~'v“ﬂ‘ l \

ool

- 89 10 10188

1 REEREPEIE T (A

Unisys Defense Systems

Integrating Syntax, Semantics, Discourse

TABLE OF CONTENTS

1 SUMMARY: MESSAGE UNDERSTANDING AT UNISYS 1
2 BACKGROUND ...ccvvicsneicsnissnnesssencsarsraeensans 2
3 OBJECTIVES 3
4 ACCOMPLISHMENTS 3
5 OVERVIEW OF PUNDIT 5
6 APPLICATIONS
8.1 Message Processing 9
6.2 Natural Language Query Processing 9
6.3 Text Processing 13
7 SYNTACTIC COVERAGE 13
7.1 The Restriction Grammar Framework 14
7.2 Coverage of the Grammar 16
7.3 The Intermediate Syntactic Representation 19
8 THE LEXICON ..ccivvcmrecsnerisnerinns 22
8.1 The PUNDIT Lexicon 22
8.2 Lexical Coverage 23
8.3 Shapes 24
8.4 Lexical Tools 25
9 SELECTION 26
9.1 Overview of SPQR 28
9.2 Methodology 27
10 SEMANTICS ...oovvrrecrrerrnneccineeinsnsaens teertesasnessreneeesanesstresanrase 28
10.1 Predicating EXPressionsccemeiiinmiensiiniiioscenineioncesnmistsssiisssicssnsssnrssan 30
16.2 Adapting the Analysis Process to New Predicating Expressionsccccccecuceen 30
10.3 Conjunction 31
10.4 Noun Phrases and Prepositiona! Phrases 33
10.5 The Semantics Rule Editorcciiniircnneinnennncisnsienintiissonienssssnsessesssssessansenes 37
11 TIME ..coeeeeeeecetensiornectscoscesssnssasrenesrsssssasescsanssser cssssosmvasnanns sasssernsssssrssssstossnsnssssnsssensescerss 38
1..1 Sentence l'ype 38
11.2 Intra-sentential Temporal Relations 39
11.3 Tense 39
DARPA Final Report -i- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantles, Discourse

11.4 Perfect and Progressive 39
11.5 Lexical Aspect 40
11.8 Adverbial EXpressionsccccccireesrercnesinessssssnssntesnecnees cevnesses 41
12 PRAGMATICS 41
12.1 Reference Resolution 42
12.2 The IDR 44
13 KNOWLEDGE REPRESENTATION AND REASONING 45
13.1 The Knowledge Base 47
13.2 PUNDIT Interface to M-Pack 47
13.3 Pic -- The Reasoning Component 49
14 CROSS-COMPONENT PHENOMENA 50
14.1 Fragments 51
14.2 Nominalisations 52
14.3 Semantic Raising 52
15 EVALUATION OF NATURAL LANGUAGE PROCESSING 53
15.1 Natural Language Evaluation Workshop 53
15.2 MUCK-II 54
15.3 Evaluating Parsing in the Resource Management Domain 57
16 PARALLELISM 58
17 MPLEMENTATION 80
18 FUTURE PLANS 60
19 ACKNOWLEDGEMENTS o 81
20 BIBLIOGRPAHY FOR PUNDIT SYSTEM 63

DARPA Final Report -ii- September 28, 1989

Unlsys Defense Systems

Integrating Syntax, Semanties, Discourse

TABLE OF FIGURES

Figure 1. Organisation of PUNDIT 6
Figure 2. Sample CASREP and Automatically Generated Summary 10
Figure 8. Processing a RAINFORM Message 11
Figure 4. Sample Trident Message and DB Fill 12
Figure 6. Templates Generated for MUCK-IIccccevrernrircnrreerenrsnssassssssanesersans 13
Figure 6. Sample Medical Abstract 14
Figure 7. Object Options in PUNDIT 17
Figure 8. Meta-Rule Applied to the Inr (Noun Phrase) Construct 18
Figure 9. ISR for I found they have been reliable 20
Figure 10. ISR for I found them to have been reliable 21
Figure 11. Partlally Evaluated ISR 22
Figure 12. Lexicon for PUNDIT Core and Varlous Domalinscccvieerrencenne. 24
Figure 18. ISR for the sentence the engineer repaired the sac 27
Figure 14. The Range of Syntactic Environments for Predicating Expressions
32
Figure 15. Sample Entry In the SRE 37
Figure 16. IDR 46
Figure 17. Sample Pfe Rule 50
Figure 18. Parsing Results for the Resource Management Domain 58
DI N
Code 1133-0NR "7 : Cartl
10/12/89 o B vai e ds
A-l
i
DARPA Final Report -ili- September 28, 1989

)

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

1. SUMMARY: MESSAGE UNDERSTANDING AT UNISYS

- 'Message understanding systems are key to handling the steadily increasing

volume of information required for intelligence, data fusion, logistics and
maintenance operations. The capture and “understanding” of information in
narrative text and messages is the focus of this contract. The goal is to convert
this information into a representation of its meaning, which can be used to
update a database with new information derived from the incoming messages,
to summarize key information, or to issue appropriate commands to a back-end,
e.g. to query a database or an expert system. The deliverable under this con-

tract is the PUNDITI;natural language understanding system.

The PUNDIT natural language system is the most ambitious natural language
understanding system built to date. Its goal is the integration of multiple
linguistically-based knowledge sources (syntax, semantics, pragmatics), together
with domain-specific knowledge (a2 domaiu model), to understand messages in a
restricted domain. PUNDIT has been designed with portability as a major goal.
To facilitate porting the system to new domains, PUNDIT maintains a careful
separation of domain-independent information from domain-specific informa-
tion. The system consists of a core domain-independent portion (20K lines of
Prolog code) which remains constant from application to application. The
domain-specific data constitutes an additional 5K-15K lines of code, depending
on the application (20-40% of the total system in any given application); this
includes the lexicon, semantics rules, co-occurrence constraints, domain model
and discourse model.

Over the four years of this contract, we have built and demonstrated an
integrated, linguistically-based message understanding system which provides
syntactic, semantic and pragmatic processing, including analysis of temporal
relations and computation of discourse referents. This system has been applied
to the processing of multi-paragraph military message traffic, combining fixed
field information with information from comment fields in "tactical message"
(telegraphic) style. The system has been ported to four military domains
(casualty reports, ship sighting reports, trouble failure reports for Trident sub-
marine computer equipment, and Navy OPREPs), to database query applica-
tions, to medical abstracts, and to an air traffic control application.

Some of the highlights of our contributions over the past two years are:

e Leadership role in evaluation of natural language systems, organizing the
first Natural Language Evaluation Workshop, and participating in MUCK-
IL.

e Port and demonstration on four military message domains and two query
front-end applications.

1prolog Understanding of Integrated Text

DARPA Final Report -1- September 28, 1989

—

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

e Expansion of PUNDIT’s syntactic, semantic and pragmatic coverage, to
handle both query applications and multi-paragraph message understand-
ing applications.

e Addition of modular interfaces for knowledge representation and reasoning
components to PUNDIT, tc draw inferences necessary for understanding
discourse and generating a database updates or templates.

e Demonstration of a 10-fold speed-up of parsing on a 12-processor shared-
memory system, through or-parallelism inherent in exploration of the parse
search space.

e Release of PUNDIT to research groups in academia, government and indus-
try under a no-cost license agreemsnt; six licenses have been issued and
more are being processed, for requests from universities, two industrial
R&D organizations, and three government sites.

Under this contract, we have been able to demonstrate the feasibility of build-
ing a portable, linguistically-based message understanding system. Although
many groups have examined the component modules in isolation, PUNDIT
represents the first systematic attempt to integrate these modules into a
coherent architecture for message understanding. In the course of this contract,
we have demonstrated the applicability of this architecture to other language
understanding applications, including query front-ends and the processing of
non-message texts; we have also demonstrated its portability across a variety of
domains. As the results of the MUCK-II Message Understanding Conference
illustrate, message understanding technology is rapidly maturing. This work
lays the groundwork for advanced applications in handling military messages,
browsing through intelligence reports, facilitating retrieval of material stored in
textual form, and for building natural language interfaces to complex systems.

2. BACKGROUND

This report summarizes the work done by Unisys under the contract Integrating
Syntaz, Semantics, and Discourse. This work was undertaken as part of the
DARPA Strategic Computing Program in Natural Language Understanding.
This report focuses primarily on the contract period May 1987 through Sep-
tember 1989, since there is a comprehensive report (R&D Status Report) cover-
ing the first two contract years, May 1985 through April 1987.

During the first two years of the contract, Unisys (then SDC) collaborated with
NYU and exchanged a number of modules with the NYU researchers. This col-
laboration contributed to the progress of the both the NYU Proteus system, and
the Unisys PUNDIT system. However, by the end of this initial two-year
period, the systems had also diverged considerably in focus and in organization.
As a result, the research during the second two years of the contract has been
done largely independently and this report will focus exclusively on the Unisys
progress and results. The initial sections of this report review the program
objectives and overall accomplishments. Sections 5 and 6 provide an overview

DARPA Final Report -2- September 28, 1989

Unisys Defense Systems Integrating Syntax, S8emantics, Discourse

of the system and describe the applications of PUNDIT to date. Sections 7
through 14 describe the coverage of the PUNDIT system, with special emphasis
on features added to PUNDIT over the past two years. We conclude with a
section on Performance Evaluation, and a brief summary of on-going work on
parallelism in natural language processing. In the section FUTURE PLANS, we
outline some of the open research issues for continued work in message process-
ing, and the relation of the message understanding work to our current work in
Spoken Language Systems. The final two sections provide information on
PUNDIT’s implementation, and acknowledgement to the many people who have
contributed to this work.

3. OBJECTIVES

The objectives of the contract were to demonstrate domasn-specific tezt-
understanding, as described in the Strategic Computing Plan: "understandfing]
streams of text to achieve automatic snput of snformation transmitted in that
form", (p. 37, [1]). Specifically, we proposed to focus on the construction of a
system consisting of domain-portable, integrated syntactic, semantic, and
discourse components to perform this processing.

During the first two years, this system was to be be developed in the context of
work on a single limited domain or sublanguage, and during the second two
years of proposed work, the portability and increased robustness of the system
was to be demonstrated by applying it to a new military domain.

The technical objectives were to demonstrate:
e Coverage and Reliability

e Portability and Maintainability

e Performance and Improved Analysis Algorithms.
The performance goals were:

e Correct syntactic and semantic analysis of unseen input at a rate
of 65% (75% for documents where all the words are known in advance,
with a false success rate of less than 3%).

4. ACCOMPLISHMENTS

This section summarizes our accomplishments against the objectives stated in
the Statement of Work.

Integration of Syntax, Semantics, Pragmatics
e Development of modular, interleaved system architecture, enhancing
portability by enforcing segregation of core PUNDIT from domain-
specific modules.

e Integration of PUNDIT with knowledge representation and reasoning

DARPA Final Report -3- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

systems to provide inferencing capabilities.

Technology Transfer

e System installed at National Library of Medicine, Unisys applications
group;

e System available under no cost license agreement; requested by RADC,
CECOM, Harvard, U., Lehigh, Penn., Cambridge U., Swedish Inst. of
Computer Science, SAIC, and several other organizations.

Coverage and Reliability
e Treatment of fragmentary input as found in message traffic, by means
of minimal extensions to the syntactic, semantic and pragmatic com-
ponents.

® Semantic coverage of nominalized verbs, adjectival participles and noun
predicates;

® Processing of intra-sentential temporal information, including lexical
aspect, tense, adverbial phrases;

® Processing of referring expressions (including definite and indefinite noun
phrases, phrases with omitted determiners, and reference to events).

e Handling of complex multi-paragraph message formats, including integra-
tion of fixed field and narrative field data.

e Meta-rule treatment of wh-constructions, providing a general, efficient

treatment of wh-constructions which has been integrated with a general
meta-rule treatment of conjunction.

Portability and Maintainability
e Port to four military message domains (casualty reports, ship sighting
reports, trouble failure reports for Trident submarine computer equipment,
and Navy OPREPs);

e Port to two database query applications, for querying databases about
ships and their locations;

e Port to handling of complex journal-quality prose in medical abstracts;

e Port to two spoken language applications: an air traffic control

DARPA Final Report -4- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

application, capturing controller/pilot exchanges; and a front-end for a
program for providing directions in Cambridge, MA.

® Creation of a System Administration Procedure (SAP), to support system
testing and incremental updating of the system simultaneously in multiple
domains; this supports backporting general system improvements to previ-
ously developed domains (see documentation in Volume II of this report).

Performance and Improved Analysis Algorithms
e Interactive selection component, interleaved with syntax, uses semantic
(selectional) information to filter parses, producing dramatic, 6-fold,
decrease in number of parses.

e Implementation of a Dynamic Translator, combining interpreted rule-
pruning with rule-compilation, to produce a 20x speed-up over interpreted
code without rule pruning.

e Speed-up of 10x using 12 processors, by exploiting or-parallelism inherent
in parsing.

Performance Goals
e Demonstrated PUNDIT on Resource Management domain, in preparation
for Spoken Language Understanding; 85% of the training corpus and 76%
of the test corpus received 2 correct parse.

e Successful participation in the MUCK-II Message Understanding Confer-
ence, porting PUNDIT to Navy OPREPs domain, for template filling appli-
cation (results not publicized by agreement of the workshop participants).

5. OVERVIEW OF PUNDIT

The organization of PUNDIT is illustrated in Figure 1. The components of this
system are best illustrated by considering how they apply to an input text. The
initial input to PUNDIT is a string of characters. The lezical processor assem-
bles the characters into tokens and associates with each token a definition that
is either found in the lezicon or can be inferred from the structure of the tokens
(shapes). The lexicon and shapes represent the data to the lexical processor and
contain some domain-specific information; the lexical processor mechanism is
entirely domain-independent.

Syntactic processing in PUNDIT yields two syntactic descriptions of the sen-
tence. The parser constructs an extremely detailed analysis of surface struc-
ture. This surface tree is regularized into an operator-argument notation called
the Intermediate Syntactic Representation, or ISR. The ISR is a regularization
of the surface syntactic parse into a canonical predicate-argument form

DARPA Final Report -b- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semanticsa, Discourse
Sentencs aad Curraat D; Contazt €¢—
Lezicen Lazics| Loakup Blapee

LEXICAL ANALYSIS

|
Stream of erd Definitions

&

.

Parse
Grammar Parser Tree Selection
Regularisatioa ‘

Surface Parse Tree
GRAMMATICAL ANALYSIS

v
Intermediate Syntaciic Represantation (ISR)

NP
Sapantic;
Rafereace
Resstation
- Semantic Representation
{ Timae
Analysis

SEMANTIC AND PRAGMATIC ANALYSIS

Semantic Representation with Time

DISCOURSE INTECRATION

Figure 1.
Organization of PUNDIT

appropriate as input to the semantics and selection components. In the ISR,
structural information not relevant to other modules is stripped away or
expressed in a vocabulary appropriate to other modules. For example, a com-
plex verb-auxiliary structure such as harpoons had been launched is regularized
into the list (simplified for presentation):

[past., perfect, launch, subj(passive), obj(harpoons)]

In addition, the ISR represents an expansion of the surface parse in that certain
kinds of information are made more explicit in the ISR: The scope of modifiers

DARPA Final Report -6- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

under conjunction, for example, is made explicit in the following ISR (which is
simplified here for clarity):
[past., and,
{enter, subj(aircraft),obj(area)],
[take, sub]j (passive) ,obj (alrcraft) ,pp(by escort)]]

Fragmentary input is expanded to the extent that this expansion is syntacti-
cally determined. A fragment such as badgers inbound is expanded to incor-
porate a copula:

[untensed, be, subj(badgers), adj (inbound)]

The parser and the ISR translator are both domain-independent procedures; the
grammar, consisting of context-free BNF definitions and restrictions on the
shape of the parse tree, represents the data to these components. Although
there are domain-specific aspects of the grammar rules, they require only very
limited changes from domain to domain.

The ISR is the input to the selection component SPQR, whose function is to
block semantically anomalous parses before they are sent to the semantic com-
ponent. The selection mechanism interacts with the user to create a database
of lexical co-occurrence patterns; the ISR of a sentence is checked against this
database upon completion of each clause and noun phrase. The mechanism
itself is domain-independent, but the set of selectional patterns it creates con-
tains much domain-specific information. The ISR is also the input to the seman-
tics analysis.

The semantic snterpreter draws upon a database of lexical semantic rules to
decompose verbs (and other predicates, such as nominalizations and adjectives)
into more basic predicates and fill their semantic roles with syntactic consti-
tuents. These rules express the decompositions of specific verbs, the semantic
constraints on potential fillers of their thematic roles, and any verb-specific
rules for the syntactic expression of arguments.

The semantic component interacts with two pragmatic components to construct
.his representation. The first, reference resolution, provides specific referents for
the noun phrases that are proposed fillers for semantic roles and provides fillers
for semantic roles which are not realized syntactically. The temporal com-
ponent interacts recursively with the semantic interpreter to provide a temporal
analysis of the sentence: It assigns an actual time to the predication, if
appropriate; it classifies the situation denoted by the predication as an event,
state, or process; and finally, it computes the relative temporal order of distinct
situations mentioned within the same sentence where the information is pro-
vided explicitly. The events, states, and processes created by the time com-
ponent hecome discourse entities, which can be subsequently referred to.

Domain knowledge is represented in M-Pack, a semantic-net based knowledge
representation system which was developed at the Paoli Research Center and is
similar to KL-ONE[3]. The selection, semantics, and pragmatics components

DARPA Final Report -7- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

consult this component as needed to support their processing.

The output of semantics and pragmatics is the Integrated Discourse Representa-
tion, or IDR, which has been used to underlie a variety of previous applications
such as a tabular summary or automatic generation of database entries or
queries. The IDR is a very detailed representation of the content of a text, but
it does not represent the kind of inferences about the text that are needed for
the OPREPs template-filling application.

In order to provide this ability, we have added a new component called Pfc
(Prolog Forward Chaining) described in section 13, which provides an inference
engine for forward chaining rules. Pfc was developed at the Paoli Research
Center independently of PUNDIT. The IDR for each sentence is currently the
input to Pfc. However, we also intend to explore the possibility of accessing Pfe
during processing, at specific points where non-linguistic, domain-specific rea-
soning would be useful.

Over the last five years, over 20 person-years have gone into PUNDIT’s develop-
ment. PUNDIT development has been funded by DARPA, the National Science
Foundation, the National Library of Medicine, and Unisys internal funding.
PUNDIT has been used to process maintenance reports of air compressor
failures (CASREPS), RAINFORM and OPREP messages of naval activities, and
maintenance reports of equipment failure aboard Trident submarines, as well as
database queries about ship status and locations. Currently in progress are
treatments of medical journal abstracts about congestive heart failure, air
traffic control dialogs, and an interface to an expert system for finding one’s
way around Boston. For these last two applications, we plan to integrate PUN-
DIT with a spoken-language capability.

6. APPLICATIONS

PUNDIT has been applied to a range of domains over the past four years. For
a specific application within a given domain, the core system is augmented by
domain-specific data files (the knowledge base, the lexicon, etc) and is front-
and back-ended by application modules. These provide the user interface to
PUNDIT, and .uay perform application-specific tasks based on PUNDIT's out-
put: for example, sumicari.:ng the input, interfacing to an expert system, and
updating or queryi- . .. database. All of these back-ends use the same IDR
structure (the ontr: . - PUNDIT) as input.

The {wo major zpuncation areas to date have been message processing and
database queries. O\ - - »al has been to establish the portability of PUNDIT
across different subjc .t matter areas (intelligence messages, maintenance
reports), and to establish its utility for a variety of tasks. We see the basic
capabilities described here as applying to a wide variety of problems, including
intelligent message routing, intelligent information retrieval, sorting and brows-
ing through large text collections, intelligent front ends for databases and
expert systems.

DARPA Final Report -8- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

8.1. Message Processing

Applications have been developed to process four types of messages or reports:
maintenance reports on Burroughs equipment, messages reporting equipment
failures on Navy ships (CASREPs), Navy RAINFORM tactical messages, and
'trouble and failure reports’ (TFRs) from Trident submarines.

The CASREPs application was developed in the context of a Navy battle
management domain focused on force readiness. For this application, the system
processes the remarks field of messages and generates a tabular summary of the
major problems and findings. Figure 2 below shows a sample CASREP and the
summary output generated by PUNDIT.

The next two applications were also in the message processing domain; these
were the RAINFORM messages, for MUCK-I and a set of Trouble-Failure
Reports, for computer equipment problems on board the Trident submarine.
For MUCK-I, the goal was to process the RAINFORM messages. The RAIN-
FORM messages are ship sighting messages, similar in content to the OPREP
messages used in MUCK-II. A sample message in shown below in Figure 3, with
an explanation of how PUNDIT reconstructs the missing information from con-
text.

The Trident TFR application focused on handling a complex message format,
consisting of fixed field data (used to set a "context" for the narrative), and a
number of narrative fields, each with a header, eliciting a specific type of infor-
mation (e.g., cause of failure)[2]. Figure 4 below illustrates this style of mes-
sage. To simulate message capture at the point of message entry, we imple-
mented an interactive front-end, which allows a message to be collected interac-
tively through a prompt-response dialogue. The system asks the user a number
of questions, designed to elicit key facts about the problem (what went wrong,
what was the cause, what action was taken, etc.); PUNDIT analyzes, validates
and integrates the user’s answers into a representation of the message content.
The results of this analysis are used to update a historical database of equip-
ment problems, which can then be queried using a pre-defined query language.
The most recent application of PUNDIT has been to the OPREP domain, for
MUCK-II. We show below in Figure 5 the template fill created from an
OPREP message.

8.2. Natural Language Query Processing

In query processing, the core components of PUNDIT analyze an English query
and produce a set of meaning representations, which are then mapped to a set
of database relations. For queries to a foreign database (either remote or local),
the database relations are translated into QUEL, and the resulting QUEL query
is used to access an INGRES database. The results are displayed to the user.
Alternatively, the database relations may be used to access an integrated Pro-
log relational database. These approaches have been used to support English
queries on an INGRES database of ship movements and on Prolog databases of

DARPA Final Report -9- September 28, 1989

Unlisys Defense Systems Integrating Syntax, Semantics, Discourse

FAILURE OF ONE OF TWO SACS. UNIT HAD LOW OUTPUT AIR PRES-
SURE. RESULTED IN A SLOW GAS TURBINE START. TROUBLESHOOTING
REVEALED NORMAL SAC LUBE OIL PRESSURE AND TEMPERATURE. ERO-
SION OF IMPELLOR BLADE TIP EVIDENT. CAUSE OF EROSION OF IM-
PELLOR BLADE UNDETERMINED. NEW SAC RECEJIVED.

Status of Sac:

Part: sac State: inoperative

Damage:

Part: blade tip State: eroded

Finding:

Part: air pressure State: lowered

Finding:

Part: oil pressure State: normal

Finding:

Part: oil temperature State: normal

Finding:

Agent: ship’s force State: has new sac
Figure 2.

Sample CASREP and Automatically Generated Summary

DARPA Final Report -10- September 28, 1089

Unlsys Defense Systems Integrating Syntax, Semanties, Discourse

Message number: 11

Enemy platform: SUBMARINE
Reporting platform: TEXAS
Report time: 0830T

Sighting message:
SIGHTED PERISCOPE AN ASROC WAS FIRED PROCEEDED TO STA-

TION VISUAL CONTACT LOST, CONSTELLATION HELO HOVERING IN
VICINITY.

PROCESSING HIGHLIGHTS

e Parsing run-on sentence.

e Message header creates context for interpreting the message:

TEXAS sighted a periscope [of submarinel].
An asroc was fired by TEXAS at [submarinel)].
TEXAS proceeded to station.

Visual contact on [submarinel] lost by TEXAS.
Constellation helo hovering in vicinsty.

Figure 3.
Processing a RAINFORM Message

DARPA Final Report -11- September 28, 1989

Unisys Defense Systems

Integrating SyiLiax, Semanties, Discourse

TER number: 1
Part: 123456

Equipment code: TLS

Name:

tape lock switch

TER date: 4/3/85 Report date: 4/3/85

A. First indication of trouble:

WEFILE PERFORMING TEST 1, TAPE LOCK SWITCH WENT OFF LINE TO NOT READY.

Relation Attribute Value
header_info tfr_number 1
equipment_code TLS
part_number 123456
tfr_date 4/3/85
report_date 4/3/85
speaker J JONES
failure tfr_number 1
failed_component [switchl]
type_of_fallure
cause_of_fallure
circumstances tfr_number 1
circumstance_of_failure (test 1]
symnptoms tfr_number 1
symptoms_of_failure [off line]
procedures_ref tfr_number]
procedure_name st
procedure_number TEST 1
part_in_equipment tfr_number 1
part_number 123456
equipment_code TLS

Figure 4.

Sample Trident Message and DB Fill

DARPA Final Report

-12-

September 28, 1989

-

Unisys Defense Systems

Integrating Syntax, Semantlics, Discourse

MESSAGE ID

EVENT: HIGHEST LEVEL OF ACTION
FORCE INITIATING EVENT
CATEGORY (S) OF EVENT AGENT (S)
CATEGORY (S) OF EVENT OBJECT(S)
ID(S) OF O-TH LEVEL EVENT AGENT (S)
ID(S) OF O-TH LEVEL EVENT OBJECT (S)
INSTRUMENT (S) OF O-TH AGENT (S)
LOC OF OBJECT(S) AT TIME OF EVENT
TIME (S) OF EVENT

RESULT (S) OF EVENT

OWOJOU b WO

-

MESSAGE ID

EVENT: HIGHEST LEVEL OF ACTION
FORCE INITIATING EVENT
CATEGORY (S) OF EVENT AGENT (S)
CATEGORY (S) OF EVENT OBJECT (S)
ID(S) OF O-TH LEVEL EVENT AGENT (S)
ID(S) OF O-TH LEVEL EVENT OBJECT(S)
INSTRUMENT (S) OF O-TH AGENT (S)

LOC OF OBJECT(S) AT TIME OF EVENT
TIME (S) OF EVENT

RESULT (S) OF EVENT

QOUONIO U WwNHO

[

Figure 5.

DEV-GP1-N09722-008
ATTACK

HOSTILE

SURF

NO DATA

HOSTILE FORCES

USS STERETT CG-31
SSN-12

NO DATA

"0819 (L) "

RESPONSE BY OPPOSING FORCE

DEV-GP1-N09722-008
ATTACK

FRIENDLY

SURF

NO DATA

USS STERETT CG-31
UR KIROV CLASS CGN
HARPOON

NO DATA

"0823(L)"

NO DATA

Templates Generated for MUCK-II

analyzed CASREP and RAINFORM messages.

Recently, we have used PUNDIT to process queries in the Resource Manage-
ment domain. Because no database was available, our experiments(18] were
limited to collecting statistics on parsing the queries.

More recently, we have applied PUNDIT to processing exchanges between air-
traffic controllers and pilots; also to queries to an expert system for navigating
through Cambridge, MA.

8.3. Text Processing

Although our major focus has been on telegraphic message processing, PUNDIT
is also able to parse full journal quality text. For example, it can process the
medical abstract shown below, in Figure 6.

7. SYNTACTIC COVERAGE

This section provides an overview of PUNDIT’s approach to syntax. PUNDIT
constructs two syntactic representations for every sentence. The first

DARPA Final Report -18- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Title: Clinscal evaluation of teicoplanin for therapy of severe snfections
caused by gram-posstive bacteria.

Teicoplanin was evaluated in 47 patients with severe infections, including 14
patients with bone infections, 11 patients with soft-tissue infections, 7 patients
with endocarditis, 5 patients with pneumonia, 3 patients with septic thrombo-
phlebitis, 3 patients with septicemia of unknown origin, and 4 patients with
miscellaneous infections. Overall, bacteremia was documented in 24 patients.

A total of 22 patients (46.8%) were clinically cured, 8 patients (17.0%) im-
proved, 2 patients (4.3%) had relapses after initial improvement, and 15 pa-
tients (31.9%9%) failed to respond. The results were better in nonbacteremic pa-
tients (19 of 23 patients [82.6%)] were cured or improved) than in patients with
bacteremia (12 of 24 patients [(50.0%] were cured or improved). Bacteriological
cure occurred in 25 patients (53.2%), and superinfections were documented in 6
patients (12.8%). No major adverse effects were observed. We conclude that
teicoplanin is a potentially effective and well-tolerated antimicrobial agent for
therapy of nonbacteremic infections caused by gram-positive bacteria.

Figure 6.
Sample Medical Abstract

representation is a surface structure parse tree, based on string grammar{12].
The second representation is constructed from the first to produce an Intermed:s-
ate Syntactic Representation (ISR) which regularizes, and in some cases expands
the surface structure parse tree into a representation of just those aspects of
syntactic structure that are relevant to semantics and selection. In this section,
we first describe Restriction Grammar as a framework, then outline the gram-
mar coverage, and then describe the ISR.

7.1. The Restriction Grammar Framework

The syntactic component uses Restriction Grammar, which is a logic grammar
framework. Like most logic grammars, Restriction Grammar supports a gram-
mar consisting of context-free rules (BNF definitions) and constraints or restric-
tions, to capture context-dependent relations [14]. However, Restriction Gram-
mar also has a number of interesting features that distinguish it from many
logic grammars.

Restrictions

DARPA Final Report -14- September 28, 1989

—

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Restriction Grammar, like other logic grammars, is based on the notion of
parsing as a proof of sentencehood. However, restrictions in Restriction Gram-
mar can be viewed as well-formedness constraints on the structure of the parse
tree (or proof tree). Restrictions gather contextual information by examining
the parse, and not by using parameter passing. Also, restrictions are con-
strained in their power. In particular, they can only reject or accept proposed
analyses; they do not add information or instantiate variables (in contrast to,
for example, unification grammars). These features make it easy to write
meta-rules in RG and also to experiment with alternative control strategies
(parsing strategies).

Meta-Rules

RG uses meta-grammatical notions to capture linguistic generalizations and to
maintain compactness of the grammar. A set of meta-rules generates rules for
conjoined structures from definitions of simple (unconjoined) constituents [15].
Wh-constructions are also treated via a different type of meta-rule [17]. For
wh-constructions, grammar annotations in the BNF definitions indicate the need
for a gap or the filling of a gap. The annotated grammar rules are processed
into executable form, which inserts paired parameters for passing information
on the state of the gap.

Regularization Rules

Coupled with each BNF definition is a regularization rule for computing the
Intermediate Syntactic Representation (ISR) compositionally from the surface
syntax. The compositional computation of the ISR permits interleaving of syn-
tax and semantics, to provide for earlier application of semantic constraints
during parsing. For both conjunction and wh-constructions, the rules to gen-
erate the ISR integrate easily into the meta-grammatical framework.

Parsing Control

Restriction Grammar is implemented in Prolog. A translator turns RG rules
(context-free BNF definitions with restrictions) into executable Horn Clauses in
a fashion similar to DCGs. The parser for RG can be readily implemented as a
top-down parser, and this has been the parsing strategy in use for most of our
applications. One refinement has proved very useful, namely the Dynamic
Trar-lator, which mixes interprcted and translated code, to allow grammar
rules to be modified during parsing[8]. Because of the limited power of restric-
tions, we have also been able to use RG in a bottom-up, left-corner parser. In
this implementation, if a restriction requires more of the parse tree than has
been built, it is delayed (by use of a continuation). We have also explored the
notion of delayed restrictions and continuations for parsing with well-formed
substrings(9].

DARPA Final Report -15- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Or-Parallelism

Parsing is a search problem. The form of RG has made it possible to exploit the
or-parallelism inherent in the set of alternative grammar rules. Simulation
experiments have indicated that speed-ups of 20-30 fold are possible, given a
sufficient number of processors (40-60 processors)[16,19]. More recently, we
have run a parsing application on a 12-processor system that showed as much
as 11 fold speed-up.

7.2. Coverage of the Grammar

This subsection will summarize the current state of PUNDIT's coverage.

Noun Phrases

Coverage of noun phrases is generally very good. It includes treatment of com-
plex pre-nominal modifiers: multiple nouns, adjectives, qn expressions such as a
two-foot deep hole, and nq expressions, such as the number 2 pump. Nominali-
zations, e.g., failure, are handled as ordinary noun phrases in the syntax, so
they are covered and later converted by semantics to capture the underlying
verb semantics. A wide range of post-nominal expressions are also covered,
including multiple prepositional phrases, participial expressions (the book read
by the students, the person running the race), adjective expressions (the student
present for the ezam), appositives and parenthetical expressions (Florence
Joyner, the Olympic athlete, and my PC (the one I bought a month ago). Rela-
tive clause coverage has been greatly expanded with the introduction of the new
wh-module and includes both standard relative clauses, and zero-
complementizer relatives (the person I saw). Pronouns are handled by a
separate lpror option for the noun phrase; this is done because pronoun take a
highly restricted set of left and right adjuncts, compared to nouns.

Adjective and Adverbial Phrases

Coverage of adjective phrases, in pre-nominal position, predicative position and
verb complement position is extensive. In predicative and verb complement
positions, adjectives can take complex right modifiers, including prepositional
phrases (certain of a fact) and a variety of clausal complements (certain that
they came, certain to come). In the left adjunct slot, adjectives can be modified
by adverbs, e.g, very certain. The coverage of adverbials in PUNDIT includes
left and right modifiers and a recursive definition (e.g., for very quickly).

Verb and Verb Complements

Our current grammar includes more than forty classes of verb complement
(object). Selection of the appropriate complement set is controlled by a pruning
mechanism that takes the intersection of the verb’s subcategorization con-
straints (given in the objlist for the verb entry in the lexicon) with the set of
object options. Classes of complement types are listed in Figure 7 below. Each

DARPA Final Report -16- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semanties, Discourse

direct object,
ditransitive,
objects of auxiliary verbs:

vo (I may read the book);

vingo (I am reading the book);

veno (I have finished the book);

venpass (She was given the book);
objects of be and other copulative verbs:

objbe (They are here/at home; they remain leaders),
direct object + prepositional phrase,
particie + various object types,

(e.g., close up, close up the store, close the store up),
clausal objects

(e-g., I said that I would come; it seemed to be raining).
equi-verb objects

(e.g., I wanted to go).
small clauses

(e.g., they painted the house red).

Figure 7.
Object Options in PUNDIT

of these object options has a regularization rule associated w'lh it that allows
correct reconstruction of the underlying semantics, including correct handling of
subject /object control issues. This is done by the Intermediate Syntactic Regu-
larization component and will not be further discussed here; see the PUNDIT
Guide to Verb Objects (in Volume II) for more complete documentation of
PUNDIT’s object options. One respect in which PUNDIT's treatment of object
differs from string grammar is in a uniform treatment of modals, which simply
take the object option vo, namely infinitive verb + object.

Sentential Adjuncts

The grammar covers a variety of sentential adjuncts, including adverbial
modifiers (adverbs and prepositional phrases), purpose clauses (I did it to wsn),
and a range of subordinate clauses (until finished; before they came; after run-
ning the race). It now also covers a class of adverbial phrases consisting of a
lone noun phrase. In normal English, this includes time expressions, e.g., I left
last week. Also needed for message texts is a similar location adverbial construc-
tion, such as lesion right lung, where right lung is a locative phrase without a

DARPA Final Report -17- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

preposition. Both of these require strong selectional or semantic constraints, in
order to avoid taking almost any noun phrase in any adjunct slot. Not included
yet are right-dislocated relative clauses (the person came whom I wanted to
meet).

Conjunction

The conjunction meta-rule component generates rules to handle conjunction
from the basic BNF definitions. Conjoining is allowed only at certain nodes,
which eliminates some of the spurious ambiguity that can be associated with
treatments of conjunction. The current mechanism handles a variety of con-
junctions (and, or, but), paired constructions (both...and, neither...nor) and
"comma-conjunction" (use of comma to take the place of an explicit conjunction
in a list such as apples, oranges and pears). Since the meta-rule generates a
recursive definition, an arbitrarily long series of conjunctions can be handled.
Figure 8 illustrates the application of the meta-rule for the Inr construction
(left-noun adjunct + head noun + right noun adjunct). Thus BNF definitions
can be written without worrying about conjunction; the meta-rule component
is then applied to generate automatically the correct rules to support optional
conjoining.

In addition, the meta-rule component allows for gapping under conjunction. In
particular, it can handle gapped subject, gapped object, and gapped verbs, as
follows:

I mixed up the batter and baked the cookies.
I cooked and they ate the cookies.
I baked the cookies and Robin the cake.

Wh-Constructions

The new meta-rule component for wh-constructions now covers questions, rela-
tive clauses and indirect questions (I don’t know what they want). We plan to

lnr ::= 1ln, nvar, rn
=> (via meta-rule)
Inr ::= 1ln, nvar, rn:

ln, nvar, rn, conj_wd, Inr.

Figure 8.
Meta-Rule Applied to the Inr (Noun Phrase) Construct

DARPA Final Report -18- September 28, 1989

N B

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

extend it shortly to cover headless relative constructions (Whatever you need s
here) as well. It supports the interaction between conjunction (and its gaps)
and the wh-constructions (and their gaps).

In the wh-constructions, the function of the meta-rule is be to introduce param-
eters into each definition, so that gap information can be passed around,
namely the need for a gap, or the fact that a gap has been found. This makes
the handling of wh-constructions invisible to the grammar writer, who need only
worry about routine constructions. A meta-rule treatment has several advan-
tages over a treatment via interpreter in the style of Extraposition Grammar.
These include appropriate limitation of the scope of the gap, the ability to
trznsiate /compile the grammar rules, and ease of integration with conjunction.

Wh-constructions are handled by parameterizing the grammar rules: top-level
rules that license a gap are assigned parameters by hand, as are the terminal
gap-accepting rules (e.g., realization of a noun phrase as a gap). Meta-rules
then generate appropriate "pathways" (via parameters) that license gaps for
just those elements that can dominate a gap. Parameters are paired; the input
parameter licenses the gap, and the output parameter indicates that the gap
has been found (and filled). This "change of state” in the paired parame-
ters is used to ensure that each gap is filled once and only once. The conjunc-
tion meta-rule then operates on the parameterized wh-rules to link gaps within
conjoined structures by unification, so that any gap within a conjoined struc-
ture is treated identically for all conjuncts.

Fragments

Because much of our work has been focused on message traffic, PUNDIT sup-
ports a comprehensive, elegant treatment of fragmentary and run-on sentences
that are characteristic of message text[21]. There are five basic fragment types,
including fragments for missing subject (tvo: was repaired), missing verb
(sero_copula: disk bad; disk repaired), missing subject and verb (predicate:
broken since yesterday), missing object (engineer repaired), and noun phrase
fragment (nstg frag: bad drive). Other recently added center string rules
include rules for respouse fragments, necessary to handle certain kinds of
question /answer interchanges, e.g., Are you going? Yes.

7.3. The Intermediate Syntactic Representation

While the level of complexity of the surface structure parse tree is necessary for
doing correct syntax, not all of that complexity is necessary for further semantic
and pragmatic processing. In order to buffer PUNDIT’s semantic and pragmatic
components from the complexity of the surface structure parse tree, we
developed the Intermediate Syntactic Representation (ISR), which provides a
more canonical representation of the information expressed in the parse tree.
The ISR is an operator /operand form that regularizes the predicate-argument-
modifier relations implicit in the parse tree. In addition, the ISR provides a

DARPA Final Report -19- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discour-

clean separation between syntax and semantics, allowing changes in the g m-
mar to be made independently of semantic changes.

An example of an ISR expression is given in Figure 9 for the sentence I found
they have been reliable. The ISR is represented as a Prolog term. The top-level
operator of this ISR is the tense marker ’'past’ which is an operator that takes
one argument (an OP1). Using Prolog list syntax, if the first element of the list
is an OP1, then its argument is the remainder of the list. All tense and aspec-
tual markers are OP1's. The first element of the remainder of the list is the
verb find. Since verbs have variable numbers of arguments plus optional
modifiers, the remaining elements of the list are taken to be the arguments of
the verb, followed by its modifiers, if any. Here, the subject and object are verb
arguments. The subject is the singular pronoun I, and the object is itself a
clause, with OP1’'s present and perf indicating tense present and aspect
perfect, and verb be. This ISR can be compared with a similar one for the
sentence I found them to have been reliable, shown in in Figure 10. Here the
differences in syntactic structure which are not relevant to semantic and prag-
matic processing have been removed. The only difference in the ISR of these
two sentences is in the tense marker of the object clause.

In order to construct the ISR, every rule in the grammar is annotated with an
expression in the Translation Rule Language (TRL). These TRL expressions
declaratively indicate how the ISR of a node should be constructed from the
ISR of its children. The ISR’s of terminal nodes are derived from the lexical
entries of the words attached. Thus, the construction of the ISR is strictly com-
positional. The declarative nature of the Translation Rule Language also allows
it to integrate smoothly with the meta-rule component.

Evaluation of the ISR goes on in two stages. In the first stage, TRL expressions
are evaluated, which gives rise to a list structure representation for each node.

[past.
find,
subj ([pro([i.singzlar, A]l)]).
obj ([present,
perf,
be,
subj ([pro([they,plural . B])]).
adj([reliable])])]

Figure 9.
ISR for I found they have been reliable

DARPA Final Report -20- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

(past,
ind,
subj ({pro([i.singular.A})]).
obj ([untensed,
perf,
be,
subj ([pro ([they,plural,B])]).
adj([reliable])])]

Figure 10.
ISR for I found them to have been reliable

These structures, however, may contain lambda expressions whose values may
not be available at the current node. Thus, a second stage simplification is
needed in order to perform lambda application and to remove unnecessary list
structure.

TRL expressions are associated with grammar rules using a Prolog infix opera-
tor -> which has the body of a BNF expression on its left, and a TRL expres-
sion on its right. For a simple example, consider the grammar rule for object
when the object of the verb is a simple noun phrase.
object ::= np
-> lambda (Verb, lambda (Subject, [Verb, subj (Subject) . .obj(np)])).

The TRL expression here is a function of two arguments (actually, two func-
tions of one argument each). The body of the lambda expression constructs a
predication whose operator is the verb, with the subject and object as operands.
The subj label wrapped around the subject inserts a syntactic role marker in
the ISR. These markers are called 'semlabels’ (semantic labels) because they
are used in semantic processing to map syntactic constituents to semantic roles.
The np atom in the TRL expression is a command to insert the ISR of the np
child into the ISR of the object node at this point. When the object rule is
completed, its ISR will not be simplifiable because the arguments to tte func-
tion will not be available. One parent node of object is assertion, whose
(simplified) grammar rule is:

assertion ::= subject, ltvr, object -> [object, ltvr, subject].

For the sentence I found them, evaluating the TRL expressions for assertion,
subject, verb, and object yields the structure shown in Figure 11. The use of
the list notation in the ISR is overloaded, indicating both operator/operand
structure and lambda application. In this case, because the first element of the
list is a lambda expression, we know that this is an instance of lambda applica-
tion. The ISR of the object, a function of verb and subject, is applied to the

DARPA Final Report -21- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

[lambda (Verb,
lambda (Subject,
[Verb.
subj (Subject),
obj ([pro ([they.plural,B])])])).
find,
[pro([i.singular.A])]]

Figure 11.
Partially Evaluated ISR

ISR's of verb and subject, to produce an operator-operand representation of the
clause:

[find,
subj ([pro([{i.singular, A])]).
obj ([pro([they.plural,Bl)])]

8. THE LEXICON

In describing lexical coverage, we distinguish between syntactic and semantic
coverage. The syntactic properties of lexical items can potentially be exhaus-
tively enumerated while semantic and pragmatic properties (i.e., meaning) are
not enumerable. For example, proper names, which can be considered part of
world knowledge, are not enumerable. Also, distinguishing among the different
uses of polysemous words depends heavily on world knowledge and can be
highly domain dependent. ‘r'his section describes syntactic lexical coverage.

8.1. The PUNDIT Lexicon
The PUNDIT lexicon has several features that are relevant to this discussion.

Entries indexed on first word
Each lexical entry is entered into the (Prolog recorded) database, indexed
on the first word. Most entries, of course, have only one word; however, for
multi-word expressions (e.g., red blood cell), the entry is indexed only on the
first word (red in this example). Each entry in the lexicon consists of the
WORD, the index term, the root, and the attribute list. The source form of
the lexicon looks as follows:
: (WORD, root: ROOT, ATTRIBUTE_LIST).

where ATTRIBUTE_LIST is a list of the form:
[LEXICAL_CLASS : ATTRIBUTES | MORE_ATTRIBUTES].

DARPA Final Report -22- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Idioms (multi-word expressions) are entered by use of the circumflex infi
operator ("), which connpects the words in the multi-word expression, e.g.,

: (red"blood”cells, i not: red"blood”cell, [n: [ncountl, plura

Compression of redundant information

The PUNDIT lexicon enters each morphological variant as a separate
entry, since there is (currently) no separate morphological component. As a
result, there is a great deal of redundancy between morphologically related
entries. To minimize this redundancy, the lexicon compresses information,
storing the full set of attributes in the root entry, and using pointers to this
information in the morphological variants. This means that at lexical look-
up time, the look-up procedure must “reconstitute” entries for individual
words into their full form.

Multiple Entries

A single word may have multiple entries in the lexicon. This can reflect
incremental additions to the lexicon, or it can reflect differing forms, e.g.,
different parts of speech, as in the noun trasn vs. the verb trasn; it can
result from genuine homographs, such as the verb can used as a modal (be
able) or as a transitive verb for the canning process. At times, it can also
reflect an error, where two people have independently entered the same
word into the lexicon. In any case, one function of the lexical look-up pro-
cedure is to amalgamate these entries into a single entry for purposes of
parsing. Where two entries are identical, the program is smart enought to
simply collapse them. In other cases, the union of the attributes is
recorded.

Shapes: a grammar for productive forms

The last issue concerns the problem of how to store productive forms in the
lexicon. This arises, for example, for numbers, dates, times, part numbers,
etc. The solution in PUNDIT is to use a shapes grammar, which parses the
tokens within a productive form, identifies the class (and attributes) of the
lexical entry from the shape of its tokens, and assigns it a definition on this
basis. Definitions derived from the shapes component are then added to
the list of possible definitions for a word. This is discussed in more detail
below.

8.2. Lexical Coverage

Our lexicon files contain entries for words giving their syntactic categories, the
types of arguments they subcategorize, and the root form. Morphological vari-
ants for each word are listed separatcly with a field indicating the root. Cover-
age of the syntactic lexicon can be evaluated in terms of the following
categories.

Major word classes
Coverage of closed class items
pronouns

DARPA Final Report -28- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

determiners
prepositions
conjunctions
quantifiers
Coverage of open class items
verbs
nouns
adjectives
adverbs

The lexical entries for PUNDIT are organized in several lexicons. Associated
with the core, domain-independent files there is a standard lexicon of entries
with the potential to turn up in any domain. Associated with each domain is
an add-on lexicon of specialized vocabulary. Figure 12 indicates the size of the
various lexicons at the end of 1988. The total number of entries, which includes
all morphological variants is given first, and then broken down into distinct
roots, and 4 major syntactic categories. Note that a single lexical item can be
cross classified. The column headed CORE represents the domain-independent
lexicon. Three of the domains are labelled by the type of message: Trouble
Failure Reports (TFRs), Casualty Reports (CASREPs), RAINFORMs (naval
sighting messages); Ship DB is for an prototype application involving queries to
a ships database; NLM is for National Library of Medicine. Since these figures
were compiled, we have added three domains, and more than doubled the size
of the core lexicon.

8.8. Shapes

The shapes component of PUNDIT, which functions as an extension of the lexi-
con, is designed to recognize tokens on the input stream which cannot all be
entered in the lexicon, but whose definition can be inferred from their ‘‘shape’’.

CORE TERs CASREPs RAINFORMs Ship DB NLM
Entries 1170 170 502 296 55 192
Roots 570 54 209 101 20 78
Verbs 153 13 34 27 1 13
Nouns 163 27 148 44 19 34
Adjs 152 14 33 8 - 29
Advs 101 6 24 - - 14

Figure 12.

Lexicon for PUNDIT Core and Various Domains

DARPA Final Report -24- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Typical shapes from a real-world domain might include numbers, telephon
numbers, social-security numbers. Social security numbers, for example, can be
recognized as the following sequence of input tokens: three-digit-number,
hyphen, two-digit-number, hyphen, four-digit-number. The shapes component is
currently implemented as a definite-clause grammar operating on the input
token stream, and is invoked by lexical lookup whenever a token is not found in
the lexicon.

Some of the typical shapes currently handled by PUNDIT =are the following:

integers, which obviously consist of simply an integer;

real numbers, which consist of an inieger followed by period
followed by an integer;

fractions, which consist of an integer followed by a slash (**/”")
followed by an integer;

dates, which consist of an integer (the month) followed by a slash
followed by an integer (the date) followed by a hyphen
followed by an integer (the time of day)

part numbers, which consist of a four-digit integer followed by a hyphen
followed by a four-digit integer

Certain other shapes, in particular those from the RAINFORMs domain, exam-
ine the internal structure of the input tokens. For example, in the RAINFORM
domain, a time shape can consist of (among other possibilities) an atom of the
form NNNNt or NNNz, where “N” can stand for any single digit.

8.4, Lexical Tools

This section describes the current Lexical Entry Procedure, and other lexical
tools that have been developed. The Lexical Entry Procedure has been
designed to provide consistency, completeness, and speed of entry for new
words. The procedure elicits relevant linguistic information from the user, com-
putes dependencies between attributes, and prompts for morphologically related
forms (offering a ‘‘guess’ as to the correct form). The program then automati-
cally creates a set of related dictionary entries, with as much structure-sharing
among the entries as possible. Before the entries are actually entered in the
database or written to a file, the user may inspect and edit any entries created.
Detailed documentation for the current Lexical Entry Procedure is available in
the document, PUNDIT Lezical Entry Procedure User’s Guide, in Volume II of
this report.

A number of tools have also been developed for building and managing dic-
tionaries. These include:

Concordance Program

The concordance program creates a concordance for a corpus of text. As an
intermediate step, it creates a file with the words that are in the text but

not in the lexicon.

DARPA Final Report -2b6- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Merging Dictionary Tool
A tool exits for merging dictionaries: dictMerge takes a list of lexicon files

and merges them to make one dictionary. It also checks that there are no
redundant entries.

Sorting
When it is known that there is one lexical entry per line in a lexicon file,
the unix utility sort can be used to merge dictionaries. It should be used
with the -u (unique) and -d (dictionary order) parameters.

Missing Words
unknown_words.pl: determines which words of a corpus are not in a lex-
icon that has been loaded into an image.

Lexicon Verification
A program verify_lez is available to check the syntax within a lexicon.

Collocation Data
A program word_frequency calculates the collocation of words within a
given corpus. It can then generate a sorted list of the most frequently
occurring pairs of words, which is useful for identifying fixed multi-word
expressions.

9. SELECTION

The SPQR module (Selectional Pattern Queries and Responses)[20] is designed
for two purposes: to improve the portability of PUNDIT through semi-
automated acquisition of domain-specific semantic information, and to improve
the accuracy and efficiency of the parser.

9.1. Overview of SPQR

SPQR operates by interactively and incrementally collecting selectional pat-
terns, which represent information about the semantic acceptability of certain
lexical co-occurrence patterns, (e.g., subject-verb-object), found in partially con-
structed parses. SPQR operates by analyzing the ISR of partially constructed
parses, extracting syntactic patterns (either head-modifier or predicate-
argument patterns) from the ISR, and finally either allowing a parse under con-
struction to proceed, or failing the parse depending on the semantic compatibil-
ity of the components of the syntactic pattern. If SPQR encounters an unk-
nown syntactic pattern, it can query the user about its acceptability, store the
user’s response in a pattern database, and thus incrementally build up a data-
base of acceptable and anomalous patterns which it consults as it analyzes
ISRs. The module has proved to be a valuable tool for porting PUNDIT to new
domains and acquiring essential semantic information about the domains. Prel-
iminary results also indicate that SPQR causes a six-fold reduction in the
number of parses found, and about a 40% reduction in total parsing time.
More information about this module can be found in Volume II, under A User’s
Guide to the Selection Module.

DARPA Final Report -26. September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Dis -ourse

9.2. Methodology

The essential feature of our parser which facilitates the collecting of syntactic
patterns is the ISR produced by the syntactic analyzer. The structure of the
1SR is regular and can be analyzed to display the underlying syntactic patterns
as they are generated during parsing. A typical ISR is shown in Figure 13.

SPQR is invoked by two restrictions which are called after the BNF grammar
has assembled a complete NP {and constructed the ISR for that NP), and after
it has assembled a complete clause (and constructed its ISR). The program
operates by presenting to the user a syntactic pattern (either a head-modifier
pattern or a predicate-argument pattern) found in the ISR, and querying
him/her about the acceptability of that pattern. If the pattern describes a
relationship that can be said to hold among domain entities (i.e., if the pattern
occurs in the sublanguage), the user accepts the pattern, thereby classifying it
as good. The analysis of the ISR and the parsing of the sentence are then
allowed to continue. If, however, the pattern describes a relationship among
domain entities that is not consistent with the user’s domain knowledge or with
his/her pragmatic knowledge (i.e., if the pattern cannot or does not occur in the
sublanguage) the user rejects it, thereby classifying it as bad, and signalling an
incorrect parse. This response causes the restriction which checks selection to
fail, and as a result, the parse under construction is immediately failed, and the
parser backtracks.

As the user classifies these co-occurrence patterns into good patterns and bad
patterns, they are stored in a pattern database which is consulted before any
query to the user is made. Thus, once a pattern has been classified as good or
bad, the user is not asked to classify it again. If a pattern previously classified
as bad by the user is encountered in the course of analyzing the ISR, SPQR
consults the database, recognizes that the pattern is bad, and automatically
fails the parse being assembled. Similarly, if a pattern previously recorded as
good is encountered, SPQR will recognize that the pattern is good simply by

[past,repair,
subj ([tpos (the),
[nvar ([engineer,singular,_])]]).
obj ([tpos (the),
[nvar ([sac,singular,_])].
adi ([pastpart,break])])]

Figure 13.
ISR for the sentence the engineer repasred the sac

DARPA Final Report -27- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

consulting the database, and allow the parsing to proceed. A suite of tools is
provided to inspect and edit the patterns collected during parsing (see The
User’s Guide to the Selection Module, in Volume II).

The selectional mechanism as described so far deals only with lexical patterns
(i.e., patterns involving specific lexical items appearing in the lexicon). How-
ever, we have implemented a method of generalizing these patterns by using
information taken from the domain isa (generalization /specialization) hierarchy
to construct semantic class patterns from the lexical patterns. After deciding
whether a given pattern is good or bad, the user is asked if the relation
described by the pattern can be generalized. In presenting this second query,
SPQR shows the user all the super-concepts of each word appearing in the pat-
tern, and asks for the most general super-concept(s), if any, for which the rela-
tion holds.

Let us take as an example the noun-noun pattern generated by the compound
nominal ot! pressure. While parsing a sentence containing this expression, the
user would accept the noun-noun pattern [osl, pressure]. The program will then
show the user in hierarchically ascending order all the generalizations for os!
(flusd, physical_object, and root_concept), and all the generalizations for pres-
sure (scalar_quantity, object_property, abstract_object, and again root_concept).
The user can then identify which of those super-concepts of os! and pressure can
form a semantically acceptable compound nominal. In this case, the correct
generalization would be {fluid, scalar_quantity|, because

e The fluids in the domain are oil, air, and water; the scalar quantities are
pressure and temperature; and it is consistent with the domain to speak of
the pressure and the temperature of oil, air, and water.

e We cannot generalize higher than fluid since it would be semantically
anomalous to speak of physical_object pressure for every physical_object in
the domain (e.g., one would not speak of connecting_pin pressure or gearboz
pressure).

e We cannot generalize higher than scalar_quantity since shape is also an
object_property, and it would be infelicitous to speak of osl shape.

As with the lexical-level patterns, the user’s generalizations are stored for refer-
ence in evaluating patterns generated by other sentences. The obvious advan-
tage of storing not just lexical patterns but also semantic patterns is the
broader coverage of the latter: Knowing that the semantic class pattern [fluid,
pressure] is semantically acceptable provides much more information than
knowing only that the lexical pattern [osl, pressure] is good.

10. SEMANTICS

The semantic analysis approach used by PUNDIT has two separate, but inter-
related components: 1) the algorithm that controls the execution of the rule-
driven semantic analysis and 2) the theory of lexical semantics captured by the

DARPA Final Report -28- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

rules themselves. The basic approach described below was originally designed
for the analysis of main clauses where the PREDICATING EXPRESSION was the
verb. It was an independent system that assumed the existence of separate
components to parse sentences and to resolve referents of noun phrases, and
performed a very rudimentary time analysis. The implementation of PUNDIT
has caused the rule-driven semantic analysis approach to be fully integrated
with a syntactic parser, a reference resolution component, and a sophisticated
time analysis component. In addition, the analysis algorithm has been extended
to cover predicating expressions in a full range of syntactic environments,
including noun phrases and modifiers as well as verbs. Ports to new domains
have also made demands on the theory of lexical semantics, which has been reg-
ularized to follow more traditional linguistic classifications for the semantic
roles, and has been extended to cover a much broader range of verb subcategor-
izations.

Semantic analysis in PUNDIT is based on Inference Driven Semantic Analysis
(23] which decomposes verbs into component meanings and fills their semantic
roles with syntactic constituents. The result of the semantic analysis is a set of
PARTIALLY instantiated semantic predicates which is similar to a frame
representation. To produce this representation, the semantic components share
access to the DOMAIN MODEL that contains generic descriptions of the domain
elements corresponding to the lexical items. The model includes a detailed
representation of the types of assemblies that these elements can occur in. The
semantic components are designed to work independently of the particular
model by relying on an well-defined interface.

In order to produce the correct semantic representation, the predicating expres-
sion is first decomposed into a semantic predicate representation appropriate for
the domain. The arguments to the predicates constitute the SEMANTIC ROLES
of the predicating expression, which are similar to verb cases. Semantic roles
can be filled either by a syntactic constituent supplied by a mapping rule or by
reference resolution, requiring close co-operation between semantics and prag-
matics. A proposed role filler must satisfy the semantic class restrictions on the
role. In order to control how roles are filled, certain semantic roles are categor-
ized as OBLIGATORY, indicating that they must be filled by a syntactic consti-
tuent. Other roles, in the context of particular verbs, are categorized as ESSEN-
TIAL, which signals pragmatics to fill the role even if there is no syntactic con-
stituent available. The default categorization is NON-ESSENTIAL, meaning the
role does not need to be filled. These classifications are explained in more detail
with extensive examples in [24] and [6]. Details of the clause analysis algorithm,
as well as differences required for the analysis of other predicating expressions
are described in[7).

DARPA Final Report ~29- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

10.1. Predicating Expressions

The original clause analysis algorithm has been extended to cover predicating
expressions in a full range of syntactic environments, incluaing noun phrases
and modifiers as well as verbs. One implementation of the algorithm is used to
process all of these types of predicating expressions. This is done by having the
interpreter operate in a different mode for each different type of syntactic
environment.

Since each syntactic environment containing a predicating expression can have
embedded within it another syntactic environment containing another predicat-
ing expression, the semantic analysis algorithm must be recursive in the same
way that the syntactic parser is. For example, in the analysis of Investigation
of decreased pressure revealed metal contamination in osl, the initial call to
semantic analysis pertains to the analysis of the reveal clause. This in turn
requires the analysis of the snvestigation phrase, a nominalization, which is the
proposed filler for one of the semantic roles of reveal. The analysis of tnvestiga-
tion requires the analysis of the noun predicate pressure, as the head noun, and
a proposed filler for one of fnvestigation’s semantic roles. The modifier of pres-
sure is decreased, the participial form of the verb decrease which is being used
as an adjective. This is also a predicating expression which has to be analyzed.
After successfully completing the analysis of each of these phrases, the inter-
preter will proceed to analyze the other nominalization, contamination, the pro-
posed filler for the second semantic role of reveal, and another predicating
expression, and so on. In all of these levels of recursion, the relevant time infor-
mation and current discourse context must be kept straight so that the final
representation is accurate. This requires a carefully integrated control struc-
ture for the semantic and pragmatic components. The tight integration of con-
trol has been particularly effective in the achievement of two of the original
research goals: 1) the filling in of implicit information, and 2) the recovery of
information from incomplete sentences. The interactions with reference resolu-
tion and the time component are discussed in detail in[24, 21, 6].

10.2. Adapting the Analysis Process to New Predicating Expressions

Predicating expressions occur in a full range of syntactic environments in the
domains we have analyzed, and each receives a different representation from
the ISR. For each of these predicating expressions, adjustments must be made
to the semantic and pragmatic components to insure the production of an accu-
rate final representation for the IDR. This representation must include the
instantiated semantic decomposition, the correct resolution of referents, and an
accurate analysis of intra-sentential time relations. In practice, there are many
types of predicating expressions that do not behave semantically as either sim-
ple clauses or simple noun phrases. There are verbs that can be used as nouns,
e.g., nominalizations such as faslure and monistoring, and nouns that can be used
as verbs, e.g., deverbal nouns such as srack. Verb participles can be used as

DARPA Final Report -80- September 28, 1980

Y

Unlsys Defense Systems Integrating Syntax, Semantles, Discourse

noun modifiers, and nouns can be used to modify other nouns. Each n - type
of mixed-category predicating expression requires a customized version of the
semantic analysis algorithm that makes allowances for its particular require-
ments. For instance, nominalizations and non-finite subordinate clauses need to
go through time analysis, even though they do not have syntactically marked
tense. By allowing the tense of the matrix clause to be passed around as a
parameter during the recursive calls to semantic analysis, time analysis can be
given the information it needs to produce an accurate final representation.

Figure 14 summarizes the different types of predicating expressions that the sys-
tem handles, for at least some cases. A detailed discussion of the operation of
the interpreter for the different types of predicating expressions can be found in
(7). In the last two years of this project, we have added polysemous verbs,
polysemous noun phrases, relative clauses, and adverbial modifiers to this list.
The remaining subsections of this section describe the semantics coverage in
greater detail.

10.3. Conjunction

PUNDIT semantics currently handles the connectives and and or. Since
exactly the same processing is provided for both, the following discussion will be
in terms of and. Phrases of almost every category may be conjoined: adverbs
(quickly and efficiently), nouns (nuts and bolts), verbs (They aimed and fired),
clauses, etc. The cases which PUNDIT semantics is equipped to handle, as far
as conjunction is concerned, are conjoined sentences or clauses, and conjoined
noun phrases.

Conjoined Sentences
Example: (1-27) DEPARTED STATION AND RETURNED TO CV.

PUNDIT analyzes and produces a representation of the meaning of each sen-
tence, as though the sentences had occurred independently (i.e., Departed sta-
tion. Returned to CV).

Conjoined Embedded Clauses
Example: MILLER REPORTS THAT ATTACK WAS SUCCESSFUL AND SUB

IS OOA.

Clauses which occur as subjects or objects are analyzed syntactically as noun
phrases, and are handled by noun phrase semantics (see below). In this example,
the analysis would be that Miller reported two situations.

Conjoined Noun Phrases
For conjoined noun phrases (and plurals), three basic readings exist:

The collective reading:

DARPA Final Report -81- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

Verb Phrases
Main clause verbs
Subordinate clause verbs
Non-finite subordinate verbs
Conjoined verbs
Polysemous verbs

Noun Phrases
Nominalizations
Noun predicates
Conjoined noun phrases
Polysemous noun phrases

Prepositional Phrases
Prepositional phrases attached to nouns
Prepositional phrases attached to verbs
Prepositional phrases attached to assertions

Adjectival Modifiers
Adjectives
Nouns that are left modifiers
Participles that are left modifiers
Relative clauses

Adverbial Modifiers
Time adverbs modifying assertions
Goal adverbs modifying assertions
Other adverbs modifying assertions, such as manner adverbs

Figure 14.
The Range of Syntactic Environments for Predicating Expressions

Example: (2-25) ORIG AND FANNING FORMED SAU.
(together, the message originator and the Fanning formed a surface action unit)

The distributive reading:

DARPA Final Report -82- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Example: (5-7) MILLER AND WAINWRIGHT ENGAGED KOBCHIK
WITH MISSILES.

(Miller engaged Kobchik with missiles and Wainwright engaged Kobchik
with missiles. Two separate engagements; different missiles)

The reciprocal reading, with ‘symmetric predicates’

Examples:

(5-8) BOTH FRIGATES USING HULL NUMBER 625. IDENTITY OF BARSUK
AND KOBCHIK MAY BE REVERSED.

(identity of B. may be reversed with the identity of K.)

MILLER AND BARSUK EXCHANGED FIRE.
(Miller fired on Barsuk and Barsuk fired on Miller)

PUNDIT noun phrase semantics interprets all conjunction (and plurals) as col-
lective. For this reading, noun phrase semantics analyzes each element of the
conjunction in turn. After processing each noun phrase, . c-reates a ‘group’ of
entities, adds up the cardinality of each member to determine the number of
objects in the group, and determines the semantic class of the group based on
the class of each member. In the example below, a group is created whose
members are the Miller and the Wainwright; the class of the group is
US_platform, and its cardinality is two.

Example: (5-7) MILLER AND WAINWRIGHT ENGAGED KOBCHIK WITH
MISSILES.

10.4. Noun Phrases and Prepositional Phrases

PUNDIT noun phrase semantics is responsible for analyzing and representing
the meaning of noun phrases (NPs) and prepositional phrases (PPs). It is
important to know that NP semantics does not automatically analyze every NP
and PP in a sentence, but is rather under the control of the Semantic Inter-
preter. If, in the course of processing a sentence, the Semantic Interpreter finds
a constituent that maps to a thematic role in the semantic representation which
it is building, then it calls a procedure to analyze that constituent. If the con-
stituent is not a clause or an adjective, then NP semantics is invoked.

If the constituent is a prepositional phrase, NP semantics analyzes its object
(e.g. in (8-10) TAKING SWIMMER PICKUP BOAT UNDERFIRE WITH
SMALL ARMS, small arms is the object of the PP with small arms).

If the constituent is an NP, noun phrase semantics analyzes the constituents of

the noun phrase as described below, and creates a list of predications which
represent the meaning of the noun phrase.

DARPA Final Report -88- September 28, 1089

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Readings of Noun Phrases
A distinction is often made between referential and non-referential readings of
NPs. The distinction is illustrated by the two sentences below:

A carrier was sighted.
The USS Kitty Hawk is a carrier.

In the first sentence, a carrier describes a particular individual (the referential
reading); in the second sentence, carrier is interpreted as a property of the USS
Kitty Hawk (the non-referential reading). The distinction is an important one
for reference resolution, since individuals and properties, once introduced, are
then referred to differently. Compare:

A carrier was sighted. It attacked.
The Kitty Hawk is a carrier. The Constellation is one also.

All indefinite NPs which occur as complements of the verb be are analyzed by
NP semantics as properties, and their meaning is represented as
predicative(Head), where Head is the head noun (e.g. predicative(carrier)). All
other NPs are analyzed as referential, and they evoke discourse entities.

Analysis of Referential NPs

Noun phrases in general consist of an article, a head noun, and (optionally) a
number of modifiers of various types (nouns, adjectives, relative clauses, apposi-
tives, etc.). NP semantics must determine how each of the constituents of the
NP contributes to the meaning of the NP as a whole. The major cases are as
follows:

Nominalizations:
Nominalizations are NPs which are related to verbs, and which have a
semantics similar to that of clauses.

Example: (5-9) TEXAS CONDUCTED UNSUCCESSFUL MISSILE
ATTACK AGAINST ADM GOLOVKO

Sentence paraphrase: USS Texas attacked unsuccessfully with missile(s)
against the Admiral Golovko.

If the head noun of the NP is defined in PUNDIT’s semantic rules as a
nominalization, NP semantics simply calls the Semantic Interpreter to do
the analysis. In this case, attack would be defined as a nominalization. The
semantic rules for attack would be used to build up the semantic represen-
tation of missile attack against Adm Golovko, and the semantic rules for the
modifier unsuccessful would be used to complete the representation. The
result would be semantic representations for two situations: the attack,
and the state of non-success of the attack.

DARPA Final Report -84- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Noun Predicates:
Nour predicates are nouns which are not nominalizations, but which have
an argument structure. The analysis of such nouns and their arguments is,
like nominalizations, governed by semantics rules.

Example: (2-50) FIRED 30 ROUNDS OF AAC AND 2 MISSILES ON BAR-
SUK RESULTS OF ATTACK UNKNOWN AT THIS TIME.

Since results are always results of something, it is useful to analyze result
as a semantic predicate which takes an argument. If there is a semantics
rule defined for the head noun, as there would be in this case, NP seman-
tics calls the Semantic Interpreter to do the analysis. The result would be a
representation of the predicate-argument structure of results of attack.

Ordinary NPs:
For ordinary noun phrases (not nominalizations or noun predicates), NP
semantics analyzes the head noun and its modifiers, and creates represen-
tations which are intended to capture the semantic contribution of each. In
general, processing the head noun will result in the creation of a discourse
entity and an ‘id’ relation (singular NPs) or an ‘is_group’ relation (plural
NPs), and the modifiers will then be related to the head noun.

The analysis of modifiers is complex, and PUNDIT provides only a partial
treatment of this difficult area. Only highlights can be given here.

Articles: the article, if present, is considered to signal whether the NP is
definite or indefinite. This information is used by Reference Resolution, and
does not appear in the semantic representation of the NP.

Adjectival modifiers: if the modifier has a semantics rule associated with
it, the Semantic Interpreter is called to build a semantic representation for
the modifier and its argument (the head noun). If there is no semantics
rule, then the domain model is examined for a specific relationship between
the modifier and the bead noun. If none can be found, NP semantics simply
creates a representation of the form
unspecified_relationship(Modifier,Head). Each of these cases will give rise to
different types of semantic representation.

These representations can be illustrated with three modifiers:

an unknown submarine
a nuclear submarine
a new submarine

DARPA Final Report -86- Septembcr 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

For the first example, suppose that there is a semantics rule for the
modifier unknown. Then the analysis of unknown ship will result in a
representation of a state of ‘not knowing’ involving some experiencer and a
ship. For the second example, suppose that in the domain model, subma-
rines and other platforms have a power_source attribute, and that ‘nuclear’
is a possible power source. The analysis of nuclear submarine would result
in a representation of the form power_source(nuclear,/[submarine1]). For the
third example, suppose that there is no semantics for new, and that there
is nothing in the domain model that relates new to submarine. In this case,
NP semantics simply creates the predicate-argument structure
unspecified_relationship(new, [submarine1]).

Noun modifiers: the interpretation of noun-noun compounds is heavily
dependent on domain knowledge. For example, in terrier missiles, the noun
modifier specifies the type of missile, while in Miller missiles, the noun
modifier specifies the possessor. Possible relationships are defined in the
domain model for each domain. If no relationship can be established, NP
semantics creates an unspecified_relationship relation.

Appositives: determining the relationship between an appositive (or
parenthetical) and its head is arguably a task for pragmatics rather than
semantics, but NP semantics attempts to discover a semantic relationship
between the two, using the domain model. Two types of relation are sup-
ported, as illustrated below.

Pronouns and other reduced forms:

Most of the work of interpreting pronouns is done in reference resolution,
since semantically, these expressions are nearly empty. The task of the
noun phrase semantics component with respect to pronouns is therefore
mainly to prepare appropriate representations for input to pragmatics. The
structures handled are: wh-gaps, as in Which ships attacked?, lexical pro-
nouns (I,you,st...), one-anaphora, as in a new one from supply, elision, as in
Replaced sac, and relative clause gaps, such as the object of attack in the
ships that we attacked.

Identity of Reference:
Example: (5-16) INTEND .. ATTACK SECOND KYNDA (ADM

GOLOVKO)
The Admiral Golovko is a Kynda-class cruiser, and the appositive clarifies

the reference of second Kynda. In the semantic representation for second
Kynda, NP semantics will substitute Golovko for Kynda.

DARPA Final Report -88- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Specification of a Role Filler:
This case does not occur in the RAINFORMs corpus, but does occur in the
corpus of Trident Trouble and Failure Reports, as in:

Example: REPLACED INTERLOCK SWITCH (SN 8026).

Switches have serial numbers, and in this case the appositive specifies the
value of the serial number for the interlock switch.

10.6. The Semantics Rule Editor

An important addition to our set of tools is the Semantic Rule Editor. The
Semantic Rule Editor allows the entering and subsequent editing of a word’s
semantic information through one simple interface. The relevant information
for a given word is presented in a format patterned after a paper form. Figure
15 depicts the form's layout for the verb attack.

The contents of each of the fields on the form is strictly controlled by the SRE.
For example, when entering a verb’s noun-phrase mapping constraints, a list of

Word: attack

decomposition:
> attackP(actor theme Instrument)

clause mapping rules:

> actor: sub] pp(by)

> theme: pp(against) pp(on) obj
> instrument: pp(with)

noun phrase mapping rules:

> actor: noun pp(of)

> theme: pp(on) pp(against)
> instrument: pp(with) noun

constraints:

> actor: [elass(platform_property_C)]
> theme: [*none*]

> instrument: [class(projectile_C)]

The items in bold face represent editable field values on the form.

Figure 15.
Sample Entry in the SRE

DARPA Final Report -87- September 28, 1989

—

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

valid grammatical roles is presented to the user to select from; no other values
may be eatered.
Along with managing the editing and creation of semantic information, the SRE

interacts with PUNDIT to include the new data in the running image and to
store all the semantic information in a permanent file.

11. TIME

One of PUNDIT's unique features is its sophisticated component for temporal
analysis(25,26]. Temporal information is highly context dependent and distri-
buted among many interdependent sentence elements. The interpretation of
present tense, for example, varies in each of the following sentences, depending
on other elements in the sentence such as the type of adverbial, the number and
definiteness of the subject, and lexical aspect (i.e., inherent temporal content of
individual verbs, adjectives and nouns).

The submarine s ooa.

Submarines are subsurface platforms.
The Constellation refuels on Fridays.
The Nimstz leaves tomorrow.

The task of temporal interpretation depends on determining what entities and
situations that have been referred to have time associated with them, relating
to them the appropriate components of time (e.g., durations, onsets, termina-
tions), and representing how times are ordered with respect to one another.
The following is a list of some of the relevant parameters that have to be taken
into account in temporal interpretation.

sentence type (assertion, imperative, question)
intra-sentential temporal relations

tense

perfect and progressive

lexical aspect

adverbial expressions

other lexical information

other issues: modality, inter-sentential time

The following subsections review each item in this list, discussing how the
relevant temporal information is represented.

11.1. Sentence Type

All full declarative and interrogative sentences have a tensed matrix verb or
auxiliary verb, or have a modal auxiliary. Imperatives have a bare verbal form
with no tense. PUNDIT’s temporal component is geared to interpreting the
declarative sentences found in message text, although we have now extended it
to handle questions and imperatives as well. The following sections indicate
how temporal information in declarative sentences is processed.

DARPA Final Report -88- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Diseourse

11.2. Intra-sentential Temporal Relations
A single sentence may contain more than one clause. The possibilities include:

Clausal Adjuncts
Clauses introduced by subordinating conjunctions (e.g., because, when) are
adjuncts. If the subordinating conjunction is a temporal adverb (e.g.,
when), the temporal relation between the matrix and adjunct clauses is
computed.

Embedded Clauses

Tensed embedded clauses are interpreted like independent sentences. E.G.,
for The golovko believed that the constellation went sinker, the matrix clause
with believe gives rise to a past belief state and a past go sinker event,
but the two past times are not ordered with respect to one another.
Untensed clauses are interpreted as if they had the tense of the matrix
clause; e.g., The golovko appeared to be burning. Again, the times of the
two clauses are not ordered with respect to one another.

11.8. Tense

The present and past tenses each have a very simple rule of interpretation. A
set of interpretive procedures decides whether these rules can be applied in any
given case, and what situations they apply to. The past tense locates a time
prior to the discourse time by a binary precedes relation. The present tense
locates a time as coinciding with the discourse time by a binary coincide rela-
tion. Currently, the discourse time is simply represented as the constant
discourse_time, a temporal index for the time at which an utterance occurs,
or when a text is produced.

Each situation is assigned a temporal structure, one component of which is a
temporal index referred to as the event time. Three temporal indices are used
in interpreting all the simple and compound tenses. For the simple tenses, the
third index, the reference time, is always identical to the event time. A dis-
tinct reference time is required for interpretation of the past perfect. The
simple tenses always locate an event time with respect to the
discourse_time. Since an event time is always represented as a unary
moment relation, whose argument is the referential index for the situation
itself, the temporal relations computed by tense are always of the form

precedes(moment([EVENT1]),discourse_time)

or
coincides(moment([EVENT1]) discourse_time)

11.4. Perfect and Progressive

Interpretation of all the compound tenses (present and past perfect, present and
past progressive, present and past perfect progressive) is supported. The follow-
ing rules summarize the treatment of the compound tenses.

DARPA Final Report -89- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

If a verb phrase is in the perfect, the situation it refers to is in the past. If
present perfect, the reference time is identical to the discourse time. If past
perfect, the reference time is distinct from both of the other temporal indices;
it follows the event time but precedes the discourse time. The reference
time is used in interpreting temporal adverbs, thus given the sentence the
golovko had attacked when the submarine went sinker, the attack event would
be represented as preceding its reference time (moment([ref_moment])); the
go_sinker event would be represented as coinciding with that reference time,
or in other words, the attack event precedes the go_sinker event:

precedes(moment([attackl]),moment([ref_moment1])

coincide(moment([ref_momentl]), moment([sinker1])

Inferences are often associated with the perfect, for example, that the state
resulting from an event persists up through the present (e.g., the golovko has
disappeared). Also, the perfect can have pragmatically conditioned interpreta-
tions which are not temporally relevant. No inferences associated with the per-
fect tenses are currently supported.

Progressive affects the interpretation of temporal structure. Briefly, the event
time derived for a progressive verb is always inside some duration associated
with a situation. The consequence of this rule is that a verb which implies a
culmination point is interpreted differently if used in the progressive. Take for
example, a change of location verb like return. The following sentence would
give rise to the inference that the golovko is at the station:

the golovko returned to station

A corresponding sentence in the progressive would not give rise to a culmination
point, thus blocking the inference that the golovko is at the station:

the golovko s returning to station.

11.6. Lexical Aspect

Verbs are recognized as having lexical aspect. Nouns that are nominalizations
also are recognized as having aspect. Three categories of lexical aspect in verbs
are supported: state, process, and transition event verbs.

State
A state holds over an indefinitely long period of time with no change; e.g.,
cognitive state verbs know, believe and all predicate adjectives, be unk-
nown, be successful. Some passive participles can be interpreted adjec-
tivally, particularly in the present tense, e.g., The submarine 1s
submerged/lost/damaged.

Process
A process also holds over an indefinitely long period of time. It differs from
a state in that the participants in the process undergo change; e.g.,

DARPA Final Report -40- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantles, Discourse

approach, move, hover.

Transition event
A transition event is a change-of-state or change-of-location, i.e., an event
which culminates in a new situation. The culmination point, or transition,
is represented as a moment associated with the event itself. This moment
is represented as the onset of a period of time associated with the resulting
situation. Examples include join, break, ezpend.

There are no special aspectual categories for verbs of gradual change (e.g.,
increase, burn), punctual verbs (e.g., cease, recognize, disappear), or for cyclic
verbs (e.g., fluctuate). They are classified as transition events or processes.

A clause with a tensed verb may refer to a specific situation, or to a kind of
situation that tends to recur, e.g., the Constellation refueled (yesterday) (specific)
versus the Constellation refuels (on Fridays) (general kind). PUNDIT only
represents specific situations and the actual times at which they have been
asserted to occur. Events and processes in the simple present tense are gen-
erally interpreted as referring to types of situations, thus are not represented.

11.8. Adverbial Expressions

Lexical items, phrases and clauses with adverbial content are syntactically and
semantically very heterogeneous. Temporal adverbs that are prepositions or
subordinating conjunctions are supported. Currently, this set includes after,
before, during, while, when. Types of adverbs which aren’t supported include

Noun Phrase adverbs. EG., Monday, this week
Durational adverbs. EG., for five hours

Frequency adverbs. EG., often, frequently

Temporal quantifiers. E.g., whenever, every tsme that . . .

12. PRAGMATICS

The respective domains of Semantics and Pragmatics are not clearly demar-
cated in current linguistic theory, and the division of labor continues to be a
controversial area. The point of view taken in PUNDIT is that Semantics is
responsible for supplying the literal meaning (or meanings) of a sentence in iso-
lation, based on the meanings of its parts. Pragmatics must supply the conveyed
meaning of utterances in context. It begins where Semantics leaves off: given
literal meaning, linguistic form, and a context, it must explicate the meanings
that are conveyed in that context.

As a simple illustration of the different tasks, consider the utterance of I want
to see all ships which are in the Indian Ocean today. The literal meaning of this
sentence might be glossed as the speaker being in a state of desiring to be in a
state of visually experiencing some set of ships. A theory of semantics would
then give us the set of conditions under which this is true or false. But clearly
we cannot interpret this without reference to the context: Pragmatics must

DARPA Final Report -41- September 28, 1989

Unilsys Defense Systems Integrating Syntax, Semantics, Discourse

explain how such expressions as I, today are interpreted, and must furthermore
explain how such utterances are used to convey requests, and why it is that Yes
or That’s interesting are not appropriate responses.

Having distinguished Pragmatics from Semantics, we must be careful to further
distinguish Pragmatics from the more general study of cognition. It is not the
task of Pragmatics to explain how humans reason (in general), or how humans
model the world (in general). More specifically, in terms of computational
linguistics, it is not for Pragmatics to provide a general reasoning capability or
to furnish a knowledge base and the procedures which operate on it. These are
general cognitive facilities which go beyond linguistic competence, although it is
clear that such facilities must be available to a system which is modelling
language understanding.

12.1. Reference Resolution

A fundamental feature of all human languages is the facility for reference, and
this facility is mediated by models of the world, of beliefs, and of the discourse.
Language is symbolic: if we wish to convey some information about a ship using
language, we cannot include the physical ship itself in our utterances. Instead,
we must use the linguistic resources at our command in such a way that the
hearer (or reader) can recognize our intention, and in such a way that s/he can
successfully pick out the intended entity.

PUNDIT’s Reference Resolution component [5,4] models aspects of the recogni-
tion competence of language users: specifically, the ability of a hearer or reader
to recognize the referential intentions of a speaker or writer, and to pick out
the intended entity on the basis of some linguistic expression such as USS Con-
stellation, the carrier, or it.

A brief review of the process of semantic analysis will serve to elucidate the
relationship between Reference Resolution and the Semantic Interpreter. When
the Interpreter is processing a sentence such as (2-4) FIRED ONE HARPOON
AT UNKNOWN CONTACT, it creates a predicate-argument structure based
on the verb (fire), and then tries to fill the argument positions with constituents
from the sentence. The constituents in this case are the invisible subject (which
is considered a null pronoun), the object one harpoon, and the prepositional
phrase at unknown contact. After the Interpreter maps a constituent to an argu-
ment position in the semantic representation, it analyzes the meaning of the
constituent, and then calls Reference Resolution to determine what the linguis-
tic expression refers to.

Reference Resolution proposes candidates from the context, until one is found
which satisfies the semantic constraints on the argument of the verb. For
example, the null subject pronoun has no semantic content and could poten-
tially refer to anything in the context; in this case, the constraint that only
platforms can fire weapons is crucial to finding the right referent. By contrast,
one harpoon has sufficient semantic content to allow Reference Resolution to

DARPA Final Report -42- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

recognize that there is no such entity in the context. It will therefore create a
new entity, and will recognize that it is a missile which is associated with a pre-
viously mentioned ship.

At that point, the reference is considered resolved, and the Semantic Interpreter
goes on to fill the next argument position. When the semantic representation
has been completed, Reference Resolution is called upon again to assign a
discourse entity to the result; this is because sentences evoke situations, which
can be referred to later: FIRED ONE HARPOON... RESULTS (of that action)
UNKNOWN.

Reference Resolution incorporates knowledge about how linguistic devices such
as articles and pronouns are used to signal referential intentions. It uses such
linguistic cues, when they are present, to determine whether to create a new
entity or whether to search the context for an ‘old’ entity.

In searching for a previously mentioned entity, Reference Resolution is guided
by the representation of the meaning of the referring expression. Thus, for
example, in trying to resolve the reference of the submarine, Reference Resolu-
tion looks for a previously mentioned entity which is a submarine; in resolving
the reference of the nuclear sub, it will look for an entity which has the property
of being both a sub and having a nuclear power source.

When the referring expression is a pronoun (other than I or you), there is
insufficient semantic content for Reference Resolution to find the intended
entity on the basis of meaning alone. The most common pronoun in messages is
in fact the null pronoun, where there is no expression of the pronoun at all, and
hence no semantic content, e.g. (2-1) REGAINED CONTACT. There is also no
semantic content (or linguistic expression) in the case of impliest arguments. For
example, in nominalizations such as (2-22) ATTACK WITH ASROC AND TOR-
PEDOS one or more arguments sare implicit: here, the attacker and the
attackee. Reference Resolution may be called upon to propose candidate enti-
ties from the context to fill these arguments. In all of these cases, there is little
or no semantic content to guide Reference Resolution in its search for an
appropriate entity. To handle these cases, the system incorporates an algo-
rithm which orders discourse entities by saliency and produces a focus list; it is
the focus list which governs the search for the referents of pronouns and impli-
cit arguments.

Reference Resolution is also able to handle reference to entities which have not
been explicitly introduced in previous discourse, but whose presence is inferrable
from the context. For example, in the following text, the nose gear has not been
previously mentioned, but it is inferrable from the mention of the A-3 aircraft.

(6-38) SELECTED MISHAPS: A. FOLLOWING AN APPROACH TO A CV, AN A-3
ATTEMPTED A WAVE-OFF BUT ENGAGED NUMBER FOUR GROSS DECK PENDANT
WHILE AT AN ALTITUDE OF ABOUT 3 FEET, COLLAPSING THE NOSE GEAR ON

IMPACT WITH THE DECK ...

DARPA Final Report -43- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

For the OPREPs domain, PUNDIT’s coverage of reference was extended in
several important ways. The most interesting new functionality is the ability to
handle some cases of forward anaphora, where the anaphor (pronoun or elision)
precedes the full noun phrase antecedent. We are not aware of any previously
reported treatments of this phenomenon in other natural language systems.
Processing of forward anaphora was achieved by making reference resolution
more sensitive to the syntactic context of the references it is processing. Previ-
ously, elided subjects in sentence modifiers had been treated the same way that
all elided elements are treated-—-as pronouns with a preference for referents in
focus (that is, introduced in earlier sentences or globally available). In fact,
however, elided subjects in sentence modifiers show a preference for the surface
subject of the main clause as referents. Reference Resolution now uses this
information to correctly interpret these elided subjects. This can be seen in the
following OPREP example of forward anaphora, where PUNDIT correctly inter-
prets the subject of direct as USS Merrill and Sterett:

AS DIRECTED BY CDS1 USS MERRILL AND USS STERETT EXECUTED
COORDINATED 2 HARPOON SALVO ON KRIVAK II

12.2. The IDR

PUNDIT's semantic and pragmatic components take the ISR as input and pro-
duce a final representation of the information conveyed by the sentence which
includes a decomposition of verbs into a structure of more basic predications,
resolution of anaphoric references, and an analysis of temporal relations. The

resulting data structure is known as the Integrated Discourse Representation, or
IDR.

The IDR will be illustrated for the following sentence:

Visual sighting of periscope followed by attack with asroc and torpedos.
Translation: The visual sighting of a periscope

was followed by an attack (on the submarine) with anti-submarine rockets and
torpedos.

This particular sentence is characteristic of the sort of input PUNDIT has been
designed to handle. Note the ellipsis typical of message sublanguages.

The IDR for the example sentence is shown in Figure 16. Its major segments
are labelled Ids, Properties, Events and Processes, States, and Important Time
Relations. The Ids segment lists all the sd, ts_group, and generic predications
derived during the analysis of the example sentence. Generic relations are esta-
blished primarily to support subsequent reference through generic they or one-
anaphora. Id relations indicate the semantic type of each non-group discourse
entity, while the is_group relations specify the semantic type, members, and
cardinality of each group-level discourse entity. Thus for example the id relation
for the entity /[sightl/ derived from the nominalization visual sighting of peri-
scope, indicates that the entity is an event, while the ss_group relation for the

DARPA Final Report -44- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantlics, Discourse

entity [projectilesi/ indicates that the entity is a group of projectiles, consisting
of an unknown number of rockets and torpedos. (Labels for discourse entities
are derived from the lexical head of the expression and are typically enclosed in
brackets. These labels are arbitrary; [entity2] would do equally well.)

Relations in the Properties segment of the IDR are heterogeneous: these are mis-
cellaneous relations derived in the course of processing noun phrases. Prenomi-
nal adjectives typically give rise to such relations; processing of noun-noun com-
pounds may generate unspecified_relatsonship predications if no relationship
between the nouns can be derived from domain knowledge. In the current exam-
ple, the reportingPlatform relations are generated by a procedure which creates
a default entity if the identity of the message originator is not known.

The Events and Processes and States segments of the IDR contain predications
over discourse entities which denote situations; see[25] for a more detailed dis-
cussion of the semantics of situations. Typically it is the processing of a clause
or a nominalization which gives rise to a situation entity, and if the situation is
an event, then an entity will be generated for the resulting state as well. The
main predicate is the type of situation (event, state, or process), and each pred-
ication has three arguments:

The discourse entity;
The associated semantic representation;
A moment or period of time for which the situation holds.

For example, the first predication in the Events and Processes segment in
Figure 16 was derived from processing the ISR for the nominalization vsisual
sighting of periscope. This particular predication asserts that the referent intro-
duced by the gerund sighting denotes an event; the semantic representation was
constructed based on the semantics rules for the verb sight. In the second argu-
ment of the predication, the becomeP operator takes as its argument the
semantic representation that gives rise to a new state that is entered into,
[sight2]. The third argument of the predication, moment([sight1]), should be
interpreted functionally as returning the moment at which the transition into
the state in question occurred. Information about this new state, [sight2], is
provided by a predication in the States field.

The final segment of the IDR lists the temporal relations which were analyzed
as holding among the situations. Note in particular that since the verb follow is
defined as a temporal operator, PUNDIT has correctly established the temporal
relationship between the sighting and the attack.

18. KNOWLEDGE REPRESENTATION AND REASONING

Pundit has the capability to interact with any frame-based knowledge represen-
tation system. M-Pack, the knowledge representation system that is currently
being used with Pundit, is a version of KNET that has been enhanced to
accommodate multiple inheritance(11,22].

DARPA Final Report -46- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

Ids:

generic (torpedo)

is_group ([torpedosl] , members (torpedo, [torpedosl])), numb (_A))
generic (anti~“submarine~rocket)

id(anti“submarine”rocket, [rocketl])
is_group([projectilesl] members (projectile, [[rocketl], [torpedosl]]).numb (_B))
id(us_platform, [us_platforml])

id(process, [attackl])

generic (periscope)

id(periscope, [periscopel])

id(us_platform, [us_platform3])

id(state, [sight2])

id (event, [sightl])

Properties:
reportingPlatform([us_platforml])
reportingPlatform([us_platform3])

Events and Processes:
event (
[sightl]
becomeP (sightP (experiencer ([us_platform3]), theme ([periscopel]), instrument (visual))
sighted_atP (theme ([periscopel]), location{_C))
moment ([sightl]))

process (
(attackl]
doP (attackP (actor ([us_platforml]).theme (_19607). instrument ([projectilesl])))
period([attackl]))

States:
state(
[sight2]
sightP (experiencer ([us_platform3]), theme ([periscopel]), instrument (visual))
sighted_atP (theme ([periscopel]), location(_D))
perlod ([sight2]))

Important Time Relatlons:

the sight state ([sight2]) started with the sight event ([sightl])

the sight event ([sightl]) preceded the arbitrary event time (moment([attackl]))
of the attack process ([attackl])

Figure 186.
IDR
Visual sighting of periscope followed by attack with asroc and torpedos.

DARPA Final Report -486- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

138.1. The Knowledge Base

PUNDIT uses the KNET knowledge representation formalism to store informa-
tion about object subclasses and superclasses, part-whole relationships, and
attributes of objects. This information can be used to help establish the seman-
tic relationships among sentence components.

KNET is a semantic net representation based on KL-ONE[3]. The fundamental
data value in KNET is the concept, which represents the abstract notion of an
object or event. All concepts participate in an ssa hierarchy. Other relation-
ships among concepts are represented by roles which associate pairs of concepts.
Individuals represent specific instances of concepts.

Extensions to the KNET representation have been made in order to support
multiple inheritance, which allows a concept to inherit attributes from more
than one of its parents in the isa hierarchy. In addition, KNET has been
extended to accommodate user-defined attributes of objects, thus greatly
increasing the flexibility of the representation.

The PUNDIT system has access to the KNET knowledge base via the M-PACK
procedure library. Using M-PACK, PUNDIT has the ability not only to exam-
ine the the KNET knowledge base, but also to alter and extend it dynamically.
M-PACK provides extensive error checking, so that the knowledge base is
guaranteed never to enter an inconsistent state.

The knowledge expert may create and edit a KNET knowledge base by using
the miniBrowser program. The miniBrowser is a text-oriented knowledge-base
editor that uses the M-PACK routines, so that full consistency checking is per-
formed.

In addition, an ASCII text representation has been developed for KNET
knowledge bases. This representation has been designed to capture the most
important and most commonly used features of KNET and to be relatively
intuitive and syntactically simple. Using this representation, the knowledge
engineer may produce a relatively compact listing of the state of the knowledge
base and may use any available text editor to make otherwise difficult correc-
tions to the knowledge base. As in the case of the miniBrowser, M-PACK rou-
tines are used to guarantee the integrity of the resulting knowledge base.

13.2. PUNDIT Interface to M-Pack

In this section, two data structures that must be utilized to establish mappings
to concepts in an associated knowledge base are first described. Next, two sets
of procedures that have been defined to help achieve an appropriate degree of
portability are introduced.

Data structures used to establish mappings to concepts

One of the most basic data structures used in Pundit to access information
within a knowledge base is called a denotes clause. A denotes clause is a two-

DARPA Final Report -47- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantlics, Discourse

place predicate that establishes a mapping between the root form of a lexical
item and the name of a concept within a knowledge base. From a software
development point of view, it is desirable to insure that the names of lexical
items and the names of the concepts they map onto are distinct, but this is not
a restriction that Pundit enforces. The example denotes clause below specifies a
mapping between the common noun tape and a concept named tape_C in some
knowledge base.

denotes(tape, tape_C).

There is no reason that the lexical item tape couldn’t be associated with more
than one concept. For example, it might be associated with more than one type
of physical object—magnetic tapes and adhesive tapes. It might also be associ-
ated with a type of relation in which one entity is involved in the activity of
taping some other entity. To associate a lexical item with more than one con-
cept, additional denotes clauses must be asserted.

Pundit currently expects all nouns, adjectives, and adverbs to be associated
with concepts. It will soon expect all prepositions and verbs to be associated
with concepts as well. If these mappings are not established, the system will fail
to interpret messages properly.

A second type of basic data strvcture used in Pundit to access information
within a knowledge base is called a pkr_hook clause. A pkr_hook clause has the
same sort of function as a denotes clause, only the thing being mapped onto a
concept name is not a lexical item. There is usually no way to tell by visual
inspection that the first argument in a pkr_hook clause is not a lexical item-—
this is something determined by usage. There is, for example, both a denotes
clause and a pkr_hook clause in the Trident domain whose first argument is
part. In the case of the denotes clause, part is a lexical item, and in the case of
the pkr_hook clause, it is a Prolog term used to access a concept within a Prolog
clause defining a semantic constraint—the concept accessed needn't be the
same one that the denotes clause picks out, although they do happen to be the
same in this case. The pkr_hook clause involving the Prolog term precedes is
used during temporal analysis and the construction of database relations to
access a concept representing a certain type of temporal relation. Similarly, the
pkr_hook involving the Prolog term trident_default_associate is used to identify
the concept whose instances are the sorts of things that are usually what other
things are a part of in the Trident domain. Most messages in this domain
describe problems with components of magnetic tape units, and so it is assumed
that a part belongs to some magnetic tape unit, unless there is evidence to the
contrary.

pkr_hook(part, mechanical_device_C).
pkr_hook(precedes, precede_C).
pkr_hook(trident_default_associate, magnetic_tape_unit_C).

DARPA Final Report -48- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discour:

In Pundit development activities, it is important to keep in mind the need
use denotes clauses and pkr_hook clauses to access concepts rather than refe
ring to them directly. If this convention is violated, then the ability to switc
to a different knowledge base will be compromised.

PKR compatibility procedures and PKR operations

In addition to the use of denotes clauses and pkr_hook clauses, two distinct sets
of procedures have been defined in Pundit to achieve an appropriate degree of
portability. The first set of procedures, called compatibility procedures, provide
branching points at which methods for accessing information may differ,
depending on whether a frame-based representation is being used or not. These
procedures were introduced to avoid having to immediately replace older
domain models that are not expressed in a frame-based representation.

The second set of procedures, called PKR operations, provides a layer of com-
munication between Pundit and whatever frame-based representation system is
being used. However, it is assumed that the representation system is frame-
based. These operations are intended to free developers from the need to keep
track of the details of superficially different representation systems. Since many
pkr operations make no sense in domain models that are not frame-based,
developers will need to be careful in using them within branches of code that
are not specialized for frame-based representation systems.

18.8. Pfc -- The Reasoning Component

Pfc is a Prolog-based system which extends the reasoning capabilities of Prolog
by providing integrated forward and backward chaining horn clauses, an
integrated justification-based truth maintenance system (TMS), optional meta-
level control of the inference strategy and the ability to easily intertwine Pfc
and Prolog reasoning[10]. The addition of forward chaining to Prolog supports:

e The efficient computation of the deductive closure of a set of facts and

rules that is necessary for many tasks such as classification, consistency
checking, etc.

e The ability to support blackboard-type architectures for loosely coupled,
cooperating systems.

e The ability to implement systems which acquire their information incre-
mentally but must have a consistent interpretation at all times.

The addition of a TMS to Prolog supports default reasoning, explanations for

deduced facts, and the ability to extend the reasoning of horn clauses to include

counterfactuals and some disjunctive reasoning.

The current OPREPs version of PUNDIT uses Pfc for the template filling appli-

cation. We are planning to use it to provide a general reasoning capability to
enhance semantic interpretation and pragmatic analysis.

DARPA Final Report -49- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semanties, Discourse

In the OPREPs template filling application, PUNDIT’s output is added to the
Pfc database at the end of each sentence in the message. As each fact is added
to the database, inferences it enables are immediately drawn. These inferences
can add additional facts to the database or invoke Prolog procedures. Pfc rules
were written to enrich the IDR representation of events, deduce template fill
information, select which template events to display and to actually manage the
display as the message is processed.

For example, the Pfc rule in Figure 17 encodes the knowledge that if we don't
know that an particular event’s agent is friendly and we do know that its
object is friendly, then we can infer that the event’s agent is hostile. Note that
the TMS will withdraw this inference whenever any new information, such as
discovering that the agent is friendly, invalidates it.

As another example of a Pfc rule, consider the second rule in Figure 18. This
rule has the following effect -- whenever a template event becomes known (by
the assertion of a new template_event fact), the Prolog predicate
update_fasisoft_rankings is run taking as inputs the new event and its type.

14. CROSS-COMPONENT PHENOMENA

In a modular system such as PUNDIT, there are a number of interesting
phenomena that require tight interaction across several components. We
describe several of these below.

template_event (Situation, Type).
role(theme, Situation, Thene),
role (actor,Situation, Actor),
~“friendly_C (Actor),
friendly_C (Theme)

=>
template_info(Situation, 2, hostile_C).

template_event (Sit, Type)
=>

update_failsoft_rankings (Sit, Type).

Figure 17.
Sample Pfc Rule

DARPA Final Report -60- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

14.1. Fragments

Sentence fragments provide a strong case for linguistically modular systems
such as PUNDIT, because such elisions have distinct consequences at different
levels of linguistic description. PUNDIT’s approach to fragments can be sum-
marized by saying that syntax detects 'holes’ in surface structure and creates
dummy elements as placeholders for the missing elements; semantics and prag-
matics interpret these placeholders at the appropriate point in sentence process-
ing, utilizing the same mechanisms for fragments as for full assertions|21].

Syntax regulates the holes
Fragment elisions cannot be accounted for in purely semantic/pragmatic
terms. This is evidenced by the fact that there are syntactic restrictions on
omissions; the acceptability of a sentence fragment hinges on grammatical
factors rather than, e.g., how readily the elided material can be inferred
from context.

Semantics and pragmatics fill the holes

In PUNDIT’s treatment of fragments, each component contributes exactly
what is appropriate to the specification of elided elements. Thus the syntax
does not attempt to 'fill in’ the holes that it discovers, unless that informa-
tion is completely predictable given the structure at hand. Instead, it
creates a dummy element. If the missing element is an elided subject, then
the dummy element created by the syntactic component is assigned a
referent by the pragmatics compopent. This referent is then assigned a
thematic role by the semantics component like any other referent, and is
subject to any selectional restrictions associated with the thematic role
assigned to it. If the missing element is a verb, it is specified in either the
syntactic or the semantic component, depending upon the fragment type.

Although the initial PUNDIT system was designed to handle full, as opposed to
fragmentary, sentences, one of the interesting results of our work is that it has
required only very minor changes to the system to handle the basic fragment
types introduced below. These included the additions of: 6 fragment BNF
definitions to the grammar (a 5% increase in grammar size) and 7 context-
sensitive restrictions (a 12% increase in the number of restrictions); one seman-
tic rule for the interpretation of the dummy element inserted for missing verbs;
a minor modification to the reference resolution mechanism to treat elided noun
phrases like pronouns; and a small addition to the temporal processing mechan-
ism to handle tenseless fragments. The small number of changes to the seman-
tic and pragmatic components reflects the fact that these components are not
'aware’ that they are interpreting fragmentary structures, because the regulari-
zation performed by the syntactic component renders them structurally indistin-
guishable from full assertions.

DARPA Final Report -b1- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

14.2. Nominalizations

Syntactically, nominalizations are noun phrases, as in examples (1)-(7).
(1) An inspection of lube oil filter revealed metal particles.

(2) Loss of lube o1l pressure occurred during operation.

(3) SAC received high usage.

(4) Investigation revealed adequate lube oil.

(5) Request replacement of SAC.

(8) Erosion of impellor blade tip is evident.

(7) Unit has low output air pressure, resulting in slow gas turbine starts.

Semantically, however, nominalizations resemble clauses, with a
predicate /argument structure like that of the related verb. Our treatment
attempts to capture these resemblances in such a way that very little
machinery is needed to analyze nominalizations other than that already in
place for other noun phrases and clauses.

There are two types of differences betweer the treatment of nominalizations
and that of clauses. There are those based on lingusstic differences, related to
(1) the mapping between syntactic arguments and semantic roles, which is
different in nominalizations and clauses, and (2) tense, which nominalizations
lack. There are also differences in control; in particular, control of the filling of
semantic roles and control of reference resolution. Finally, processing nominali-
zations requires coordinating syntactic, semantic, and pragmatic processing in
such a way that each component makes the appropriate contribution to the
analysis. All of these issues are discussed in detail in [8].

14.8. Semantic Raising

A further refinement of nominalization processing mechanism was added to the
semantic interpreter in order to process RAINFORMS. This mechanism sup-
ports control and binding of implicit roles within nominalizations by the logical
subject or object of the matrix clause. Among the verbs in the corpus which
required this mechanism were conduct, continue, cease, gain, hold,lose, sustain,
and inflict, as in:
(2-27) Both units...conducted gun attacks on Kobchik.
(subject is actor of attack)

(2-22) Loosefoot 722/723 continue search.
(subject is actor of search)

(2-57) ...sustained no damage from Kynda.
(elided subject is patient of damage)

This is similar to the phenomenon known as syntactic raising, but depends
solely on the inherent semantics of the verb. Normally the only constituents
available for mapping to predicate-arguments are the local constituents, so it

DARPA Final Report -62- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

was necessary for the semantic interpreter to recognize during the processing of
the matrix clause that its subject might be required during the processing of one
of the other verb arguments. This allows it to be made available to the map-
ping process during the analysis of the verb argument. Thus, for example, PUN-
DIT is able to correctly represent the actor of the nominalization searchR as the
Loosefoots, in the second example above. In order to invoke this type of pro-
cessing for nominalizations, it is only necessary to declare it as part of the
matrix verb’s lexical semantics. Consequently, it is quite general, and has been
applied in the TFR and OPREPS domains in addition to the RAINFORMS.

16. EVALUATION OF NATURAL LANGUAGE PROCESSING

Unisys has been a major contributor towards establishing evaluation criteria for
natural language systems. During November, 1988, we organized and hosted
the Natural Language Evaluation Workshop. We were also a key participant in
the MUCK-II Message Understanding Conference. This section summarizes the
current status of evaluation efforts at Unisys and in the natural language com-
munity at large.

15.1. Natural Language Evaluation Workshop

The Natural Language Evaluation Workshop brought together over 50 research-
ers in natural language processing and related fields. The workshop was spon-
sored by RADC, AAAI, and Unisys. It sought to to address the following basic
questions:

What are valid measures of ‘‘black box' performance?

What linguistic theories are relevant to developing test suites?
How can we characterize efficiency?

What is a reasonable expectation for robustness?

What would constitute valid training sets and test sets?

How does all of this relate to measuring progress in the field?

Several concrete results came out of the workshop. In particular, a consensus
was reached on the black box evaluation task for the second Message Under-
standing Conference, and a consensus was also reached on the desirability of a
common corpus of annotated language, both written and spoken, that could be
used for training and testing purposes. Since the workshop, the Message Under-
standing Conference has been held with interesting and useful results, and the
Treebank project at the University of Pennsylvania has received funding and
has begun. This should eventually lead to more formalized testing and com-
parisons of parsers. [Lvaluation is becoming a more prevalent topic at NL
workshops, such at the one to be held at RADC in September of 1989, and the
Darpa Spoken Language Community is working hard to construct a general
evaluation procedure for the various contractors. However, most of the other
specific workshops suggested, such as Data Base Question Answering, Genera-
tion, Knowledge Representation and Pragmatics and Discourse do not have any

DARPA Final Report -58- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

funding sources available. The most difficult problems remain unresolved. We
still do not know how to effectively measure improved performance during the
crucial development phase, apart from peer review. We have little agreement
on semantic representations, and there are still large classes of phenomena that
have yet to be characterized in a scholarly fashion. However, this Workshop
represented an important first step in building a consensus in the research com-
munity on evaluation methodologies for natural language systems.

16.2. MUCK-II

On June 6-8, the Language Understanding group participated in the second
Message Understanding Conference (MUCK-II) at NOSC, where nine research
groups demonstrated and evaluated their message understanding systems. For
purposes of evaluation, each group addressed the same task on a common
corpus of Navy OPREP messages; the task was to capture the significant events
in each message by generating templates, e.g., an attack template, with slots
for attacker, attackee, weapon, time and location. The conference included an
on-site test on 5 new messages, plus reports of results on two other message
sets, plus discussion of the underlying technology and evaluation procedures.

The MUCK-II conference included government participants from NOSC,
DARPA, NIST, ONR, RADC, and other DoD agencies. A total of nine systems
were represented at MUCK-II, including current DARPA contractors (NYU,
SRI, Unisys), and also GE, PRC, GTE, ADS, MacDonnell-Douglas, and
Language Systems.

The overall results of the conference were encouraging: message understanding
technology has made major advances. The highest scoring systems reported
scores of 80-90%, with good precision (9C“%) and reasonably high recall (80%).
The Unisys system was the most ambitious in terms of linguistic coverage, but
less highly tuned to the domain, producing good precision, but lower recall.
Four of the systems were in early stages of development, and did not report
results complete enough to compare to the other systems. One important
finding (discussed in more detail below) was that different groups interpreted
the scoring guide-lines quite differently. In addition, there were some reserva-
tions about what the score really represented, and as a result, there was agree-
ment among the participants not to identify individual scores of participants. In
keeping with that agreement, we will not discuss the actual scores in greater
detail.

The value of the MUCK-II conference lay in having a diverse group of research-
ers address the same problem and in providing some objective means of compar-
ing the effectiveness of different approaches. This serves two functions: evalua-
tion of the maturity of message understanding technology and comparison of
the effectiveness of different approaches. Thus choice of application and the
associated evaluation procedure are issues central to the success of the confer-
ence. Probably more time was spent at the MUCK conference discussing

DARPA Final Report -54- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

various aspects of evaluation and scoring than on any other single topic. The
remainder of these comments will address some of the issues in evaluating mes-
sage understanding systems:

1. How do we choose an appropriate task?

What do we want to evaluate?

How do we create a procedure that evaluates the right things?

How do we ensure a uniform interpretation of the evaluation procedure?
How do we ensure uniform scoring of the results?

What about other factors like level of effort, extensibility, etc.?"

Ll A ol o

How do we choose an appropriate task?
After the first MUCK conference, there was a feeling that we needed a
specific task that could be objectively evaluated. The goal was to choose a
task satisfying the following criteria, which evolved into the template fill
task.

* Close to a possible "real" application,

* Required "understanding” of the message (not just keyword retrieval),
* Not so difficult as to be beyond the state of the art,

* Could be scored.

What do we want to evaluate?
There are at least two things that people wanted to evaluate:

* How well does the system perform the designated task?
* How well does it "understand” messages?

These goais are not necessarily consistent, however. The template fill task,
for example, was sufficiently limited that is would have been possible to
produce respectable results simply by exploiting holes in the scoring pro-
cedure and regularities of the template output. For example, of the 138
templates, 105 were "“attack” templates. This raises the question of
whether we want to allow clever ad hoc systems to complete with language
understanding systems. In other words, do we want to evaluate task perfor-
mance, or message understanding?

How do we create a procedure that evaluates the right things?
From the previous discussion, the right things are: 1) doing something use-
ful (a "real” application) and 2) evaluating understanding. It is also impor-
tant that the evaluation procedure distinguish "bad" mistakes from more
harmless ones. For example, reversing the attacker/attackee relation in a
template seems like a far more misleading error than getting the weapon
type wrong (or even than getting the wrong template). From an informa-
tional point of view, it is also worse to get an answer wrong if there are
only two choices (friendly vs. hostile) tLan if there are 10 choices. Simi-
larly, if one answer occurs 90% of the time (e.g., the ATTACK template),
it should be worse to get that answer wrong than to get an answer wrong
which occurs only 10% of the time. Devising a scoring (or penalty)

DARPA Final Report -bb- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

procedure which considers the information content of answers may be one
way to obtain a more accurate measure of "understanding”, since it would
penalize "guessing” more heavily. It should also provide a better metric of
utility, if we can associate with each "answer" a cost of getting it wrong.

How do we ensure a uniform interpretation of the evaluation procedure?

Despite documentation and some pre-conference electronic mail discussions,
it was clear that people arrived at (and even left) the conference with quite
different interpretations of the evaluation procedure. One possible way to
avoid this is to go through a pre-conference "debug” procedure, where
training data results are submitted to a uniform scoring procedure (or a
single, neutral scorer) and returned to the participants. This would have
the advantage of debugging the scoring methods as well as debugging the
participants’ understanding of the scoring procedure.

How do we ensure uniform scoring of the results?

The resolution at MUCK-II was to turn over the scoring of the final test
runs to a neutral party. However, this solution is very labor-intensive. A
better solution is to have a scoring program that can automatically score
results. This would have a number of advantages: first, it is clearly neutral
(once the scoring procedure is agreed upon). Second, participants could set
up their systems and have a neutral party run and evaluate the data. This
would make it possible to keep the test data completely secure, as has
been done in the speech community. Third, the scoring algorithm could be
distributed to the participating groups, for use during development. This
would be very beneficial, since it would provide a way of tracking progress
during development: versions of the system can be tested and compared, in
terms of overall scores.

What about other factors like level of effort, extensibility, etec.?

At MUCK-II, the only metrics were on accuracy of performance (score, pre-
cision, and recall). Participants were asked to report on total system
development time and time spent on MUCK-II, but no attempt was made
to factor these into the scoring procedure. Other performance metrics were
not assessed at all, e.g., speed of the systems in doing the template fill
task, ability to recover from errors, to debug the system, etc. All of these
are important variables, and as systems mature, some of these will become
discriminators between systems. It is important that we begin to think
about how to measure these characteristics for future MUCK conferences.

The MUCK-II conference demonstrated that message understanding is maturing
rapidly, and that operational systems for limited domains may only be a few
years away. Even a year ago, many participants were extremely skeptical about
the possibility of evaluating natural language systems in any meaningful way
and were also skeptical of building systems that could perform respectably on
some kind of "task". These people are now talking about the design of MUCK-
1. The challenge for MUCK-III is not only to produce better systems, but to

DARPA Final Report -66- September 28, 1889

Unlsys Defense Systems Integrating Syntax, Semantics, Discours

make sure that we choose applications and evaluate attributes that will b
relevant to high performance in real applications.

15.3. Evaluating Parsing in the Resource Management Domain

In order to evaluate the coverage of PUNDIT, we ported PUNDIT to the
Resource Management domain, a set of 791 training sentences consisting of
queries to a Navy database about ships, their capabilities and their locations.
This represented our first test of PUNDIT on a query corpus|18]; its previous
applications had been to messages and abstracts. Our methodology was to
increase coverage of PUNDIT as necessary, to cover the Resource Management
training sentences. We thus added (only a few) domain-independent rules to
the grammar, and domain-independent entries to the lexicon, to cover the major
constructions observed in the Resource Management corpus. We then trained
on a (subset of) this corpus. The training involved parsing the first 200 sen-
tences and examining and fixing parsing problems in these 200 sentences. We
were able to collect selectional patterns only for the first 100 sentences. In both
cases, this represents only a small fraction of the available training data (791
sentences). The sentences (training and test) were run on PUNDIT, under
Quintus Prolog 2.2 on a Sun 3/60 with 8 MB of memory.

Because PUNDIT normally produces many parses, especially when run without
selectional constraints, we allowed the system to run to a maximum of 15 parses
per sentence. We report several results below, for purposes of comparison with
other groups presenting parsing results, The first result is the number of sen-
tences obtastning a parse. We believe that this is not a meaningful figure, how-
ever, since it is possible for a sentence to obtain a parse, but never to obtain a
correct parse. For this reason, we report a second result: the number of sen-
tences obtaining a correct parse within the first 15 parses. In some cases, the
system obtained a parse, but aic NCT obtain tLe correct parse within the first
15 parses. In this case, we report it as NOT GETTING A CORRECT PARSE.

Our criteria for counting a parse correct were generally very stringent, and also
required obtaining the correct regularized syntactic expression (or ISR). Our cri-
teria included, for example: correct scoping of modifiers under conjunction;
correct attachment of prepositional phrase and relative clause modifiers; and
correct analysis of complex verb objects.

The table below (Figure 18) shows the results obtained with parsing alone (no
selectional constraints). We did not report the results obtained from selection,
because it turned out that, given our very limited collection of patterns, selec-
tion failed to change the test results significantly. However, we plan to collect
patterns for the entire training set and rerun this portion of the experiment.

There are several things worth noting in these results. First, the system is quite
fast, even running to 15 parses: the average parse time to the correct parse is
under 10 seconds for sentences averaging about 10 words/sentence. Second,
although the correct parse appears on the average in the third parse, the first

DARPA Final Report -b7- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semanties, Discourse

Training Test
(200 sentences) (200 sentences)

Get A PARSE 94% 92%
Get A CORRECT PARSE

using SYNTAX only 85% 76%

avg. # of correct parse 2.9 2.6

avg. # of parses/sentence 7.1 6.2

avg. secs. to correct parse 7.5 4.9

avg. secs. total 25.5 17.8

Figure 18.

Parsing Results for the Resource Management Domain

parse is correct more than 40% of that time. By adding semantic constraints,
we expect to improve that figure substantially, thus driving down further the
time to obtain the correct parse.

As stated above, these results were obtained without the use of domain-specific
semantic selectional patterns. Since parsing results improve significantly when
these patterns are available, we are very optimistic that PUNDIT’s coverage is
indeed adequate to a range of tasks, from query processing to message under-
standing.

18. PARALLELISM

Parsing is a search problem -- there is a great deal of non-determinism in pars-
ing, especially given a large grammar. This stems from two sources: first, the
need to explore paths that end in failure. For example, given the initial string
the bus stops, we have no idea if we have a noun phrase (the bus stops are inds-
cated in red) or subject + verb (the bus stops here). Second, there may be
ambiguity, particularly in the absence of domain-specific knowledge, which
results in multiple parses for a given sentence, e.g., starting asr compressor fasled
= gtarting the asr compressor failed or the starting asr compressor fasled. The
cc'rect parse depends on domain information. The search space explosion in a
large grammar, particularly when dealing with fragmentary input or long sen-
tences, makes parsing an ideal application for exploiting or-parallel search.

DARPA Flnal Report -58- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics, Discourse

Over the past two years, we have conducted a set of experiments that indica
that substantial speed-ups can be obtained by exploiting or-parallelism at th.
level of grammar rule disjunctions in RG. Our evidence comes from two sources.
First, we ran a series of simulation experiments assuming a shared-memory
multi-processor architecture running an or-parallel Prolog[16,19]. Second, we
have been able to run a preliminary series of experiments on an actual or-
parallel Prolog implementation, which confirmed the availability of useful or-
parallelism during parsing,.

In the simulation experiments, we searched for all solutions (parses) in parallel.
One of the attractive features of this paradigm is that the search paths can be
pursued independently of one another: when a grammar rule has a disjunction,
the processing simply splits: one processor pursues the parse, applying the first
disjunct, and runs until completion or failure; the other processor does likewise,
except that it must copy the current “state of the parse”, naming all logic vari-
ables apart, before initiating execution of the second disjunct. On failure, a pro-
cessor simply returns to the processor pool, and is assigned a new parse state
and rule disjunction to pursue.

This simple approach to spawning or-parallel processes turned out to be
sufficient to obtain expected speed-ups of 20-30 fold, running to all parses for a
set of sentences from Navy messages [16]. Our initial concern was that the
copying costs to copy a given "parse state” might Le prohibitive. Experimenta-
tion showed that the key factor in generating useful or-parallelism was the
ratio between process granularity (the median process duration between process
spawns) to the time for process start-up (including the time to copy the parse
state). We can rephrase this as how much time is spent spent doing useful
work in parallel vs. the time spent in overhead, setting up the parallel
processes. It turns out that if this ratio goes below 2:1, more than half the
available speed-up is lost.

RG has several properties that made it possible to exploit the parallelism
effectively. First, the parse state to be copied turns out to be the path from the
pode under construction to the root. This is where the tree is "growing”, that
is, where variables will be instantiated as the parse continues. Second, because
of restrictions and automatic tree building, the granularity of the processes
turned out to be big enough relative to the estimated copying cost: our simula-
tion results showed an average process duration of 9 ms., vs. an estimated copy-
ing time of 3 ms., to give a 3:1 ratio, enough to make effective use of the avail-
able parallelism.

These results were confirmed by runs on the Aurora Proiog system, the or-
parallel Prolog system under development at the Swedish Institute for Com-
puter Science (SICS)[13]. We achieved average speed-ups of greater than 10-fold
using only 12 processors. For several of the tested sentences, these results
exceeded the maximum predicted speed-ups given by the simulation experi-
ments. Furthermore, we have reason to be very optimistic that the

DARPA Final Report -59- September 28, 1989

—*

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

performance will become even better. We measured the speed-ups using 4, 6, 8,
10, and 12 processors, and there did not seem to be any reduction in the speed-

up improvement as more processors were added, indicating that we had not yet
exhausted the available parallelism.

We are now in the process of planning a series of further experiments, both to
relate these results to our earlier simulation experiments, and to increase the
number of processors.

17. IMPLEMENTATION

PUNDIT is implemented in Edinburgh-style Prolog. It is currently implemented
in Quintus Prolog, but we have ported in to a number of other Prologs, includ-
ing Explorer-Prolog, C-Prolog, and SICSTUS Prolog. Because we have ported
the system to a variety of Prolog’s, we have been careful to factor out
implementation-specific features, to keep the system easy to port.

The core (domain-independent) portion of PUNDIT consists of some 20,000 lines
of code. The domain-specific modules (lexicon, knowledge base, semantics rules,
selection patterns) add an additional 20-70% (5,000 to 15,000 lines, depending
on the application). In addition, we have buiil a number of tools, many of
which are not included in the "core" system.

In terms of performance, a PUNDIT image occupies several megabytes of space.
Running on a SUN 3/60 with 8 MB of memory, it takes approximately 1-3
seconds to parse an 8-10 word sentence. As the input becomes more telegraphic,
or longer, or malformed (e.g., a run-on), it may take substantially longer. A typ-
ical paragraph takes between 10-30 seconds to process, depending again on its
complexity and the amount of "back-end" application specific processing
required. We have found these speeds to be quite reasonable for development
work. Additional memory and /or a faster CPU will obviously increase the speed
significantly.

18. FUTURE PLANS

PUNDIT represents the most ambitious attempt to address the understanding
of written text, based on linguistic principles. It is unique in integrating, in
modular fashion, input from syntax, semantics, pragmatics, domain knowledge,
and discourse structure, to produce a single representation of information in the
text. It has been successfully applied to a range of applications, including mes-
sage summarization, database creation, database query, and a high-level inter-
face for expert systems. It also forms the basis for our current work in Spoken
Language systems.

Because of the breadth of its scope, there are many gaps in PUNDIT’s coverage.
A partial list includes:

A much tighter coupling between syntax and semantics;
A treatment of scope for quantifiers and negation;
A treatment of "non-real” events (future, imperatives, modals, negated assertions);

DARPA Final Report -60- September 28, 1989

Uanlsys Defense Systems Integrating Syntax, Semantics, Discourse

A treatment of event reference;
A detailed treatment of intersentential time relations;
A domain-independent lexicon; and

A tight coupiing between the reasoning component and semantics and pragmatics.

In addition, for spoken language, we must address issues of constraining and
training tic syntax and semantics to a new domain; preventing overgeneration
in the grammar; and recovering from disfluencies (false starts, interrupts). To
this end, we have implein~nted several experimental modules, including a
module for semantics-based selection, a bottom-up parser, and the use of a
well-formed substring table for better top-down parsing. All of these modules

are under development, and have not yet been integrated into the "stable"
PUNDIT system.

Although there are many areas not yet covered in PUNDIT, we believe that the
PUNDIT system has made an important contribution to natural language
understanding research, in demonstrating the feasibility of building of a modu-
lar, portable, linguistically-based system for language understanding. We look
forward to continuing to extend this work into new message domains, to other
kinds of input (journal articles, spoken language), and even to other languages.

19. ACKNOWLEDGEMENTS

The construction of PUNDIT represents a team effort: over the four years of the
contract, many people have played key roles in the development of the system.
We would like to acknowledge their contributions here. First, the development
of the semantic/pragmatic processing has been led by Martha Palmer (seman-
tics component) with key contributions from Deborah Dahl (reference resolu-
tion) and Rebecca Passonneau (Time), and with more recent contributions from
Catherine Ball (interactive discourse component) and Carl Weir (integration
into PUNDIT of the knowledge base and reasoning component), and also Bonnie
Webber, who joined us for a year, part-time to work on issues of temporal and
event reference. The development of the syntactic and selectional components
has been led by Lynette Hirschman, with key contributions from John Dowding
(parser, regularized syntactic representation), Marcia Linebarger (syntax, lexi-
con), and Francois Lang (selection). In addition, other people whc are no longer
with the project have made important contributions: Leslie Riley (tool develop-
ment), and Korrinn Fu (system administration procedure). We also welcome two
recent additions to the group, Lewis Norton (knowledge representation) and
Shirley Steele (speech interfaces). In addition, the Knowledge Management
Group at Paoli Research Center, led by Tim Finin, has made a substantial con-
tribution by providing a knowledge representation framework (M-Pack, David
Matuszek), the Prolog forward chaining system (Tim Finin, Richard Fritzson),
and tools and interfaces (Dan Corpron). The knowledge representation work is
based on earlier work by Michael Freeman, whose untimely death deprived us of
a valued colleague and friend; we wish to acknowledge here Mike's contribution

DARPA Final Report -681- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

to this work, and to Paoli Research Center as a whole. In addition, we would
like to acknowledge the support and encouragement we received from PRC
Directors Earl Riegel, Bruce Roberts and Allen Sears. We would also like to
thank Millie Miele for her expert assistance in the production of this report.

We would also like to acknowledge our colleagues at NYU, led by Ralph Grish-
man, particularly Mark Gawron, N.T. Nhan and Tomas Ksiezyk, who shared
many of their insights with us, especially in the first two years of the project.
We would also like to thank Beth Sundheim at NOSC for organizing the first
and second message understanding conferences, which have been crucial to the
development of the field. Finally, we would like to acknowledge our Program
Maiagers at DARPA, who have contributed their insights and support to make
this a success: Ron Ohlander, Bob Simpson, Allen Sears, and Charles Wayne.

DARPA Final Report -62- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

20. BIBLIOGRPAHY FOR PUNDIT SYSTEM

(1) Ball, C., Dahl, D., and Hirschman, L. "Answers and Questions: Processing
Messages and Queries. To be presented at the Darpa Spoken Language
Meeting Harwich Port, MA, October, 1989,

(2) Ball, Catherine N. "Natural Language Processing: An Overview'". USE, Inc.
Conference, Montreal, October, 15, 1987.

(3) Ball, C., Dowding, J., Lang, F., and Weir, C. "PUNDIT User’s Guide”. LBS
Technical report, June 1988.

(4) Ball, C. "Analyzing explicitly-structured discourse in a limited domain:
trouble and failure reports". In Proceedings of the DARPA Workshop on
Speech and Language, March 1989.

(5) Dahl, D. The Structure and Function of one-Anaphora in English. Bloom-
ington, Indiana, Indiana University Linguistics Club, October, 1985.

(8) Dahl, D. "Directions in Natural Language Interaction with Computers".
Presented at the Fall Meeting of the Institute of Industrial Engineers. Chi-
cago, December, 1985.

(7) Dahl, D. "Focusing and Reference Res.lution in PUNDIT". AAAI-86, Phi-
ladelphia, August, 1986.

(8) Dahl, Deborah A. "Determiners, Entities, and Contexts". Proceedings of
TINLAP-S, Theoretical Issues stn Natural Language Processing. Yorick
Wilkes, ed., January, 1987.

(9) Dahl, Deborah A., Palmer, Martha S., and Passonneau, Rebecca. "Nomi-
nalizations in PUNDIT". Proceedings of the 25th Annual Meeting of the
Association for Computational Lingussties, Stanford, CA., July, 1987.

(10) Dahl, Deborah A. "Integration of Semantics and Pragmatics in the Compu-
tational Analysis of Nominalizations". Colloquium presented to the Depart-
ment of Computer Science, The Pennsylvania State University, October,
1987.

(11) Dahl, Deborah, John Dowding, Lynette Hirschman, Francois Lang, Marcia
Linebarger, Martha Palmer, Rebecca Passonneau, Leslie Riley, "Integrating
Syntax, Semantics, and Discourse’’. Darpa Natural Language Understand-
ing Program. R&D Status Report Unisys Defense Systems, May 14, 1987.

(12) Dahl, D. "Natural Language Understanding for Database Generation: The
PUNDIT System", Invited talk presented at AI West, Long Beach, Califor-
nia, May, 1988.

(13) Dahl, D., Hirschman, L., and Ball, C. "A Black Box Evaluation of PUN-
DIT", Presented at the Workshop on Evaluation of Natural Language Sys-
tems, December 8-9, 1988.

(14) Dahl, D., and Ball, C. "Reference Resolution in PUNDIT", to appear in
Logic and Logic Grammars for Language Processing, edited by Stan

DARPA Final Report -68- September 28, 1089

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

Szpakowicz and Patrick Saint-Dizier, Ellis Horwood, LTD.

(15) Dowding, John, and Hirschman, Lynette. "A Dynamic Translator for Rule
Pruning in Restriction Grammar". Natural Language Understanding and
Logic Programming, Vol. II, eds. V. Dahl and P. Saint-Dizier, North-
Holland, Amsterdam, 1988, pp. 79-92.

(18) Dowding, J. "Reducing Search by Partitioning the Word Network". In
Proceedings of the DARPA Workshop on Speech and Language, March 1989.

(17) Dowding, J. "A continuation based parser for restrictions”. Presented at
the Workshop on Logic Programming and Natural Language Processing,
Stockhoim, Sweden, April 1989.

(18) Finin, Tim, Richard Fritzson and David Matuszek. "Adding Forward
Chaining and Truth Maintenance to Prolog". In Proceedings of the Fifth
Conference on Artificial Intelligence Applications, March 1989.

(17) Grishman, R., Hirschman, L., and Nhan, Ngo Thanh. "Discovery Pro-
cedures for Sublanguage Selectional Patterns: Initial Experiments”, Compu-
tational Linguistics, Volume 12, No. 3, pp. 205-215.

(19) Hirschman, L. Panelist for Panel Discussion on Logic-Based Meta-
Grammars (w. V. Dahl, F. Pereira, H. Abramson), Workshop on
Theoretical Approaches to Natural Language Understanding, Halifax,
Nova Scotia, May, 1985.

(20) Hirschman, L., and Puder, K. "Restriction Grammar: A Prolog Implemen-
tation", in Logic Programming and sts Applications, D.H.D. Warren and M.
VanCaneghem, eds., December, 1985.

(21) Hirschman, L. "Meta-Conjunction in Restriction Grammar." Journal of
Logic Programmaing.

(22) Hirschman, L., "AIl and DB Research at SDC: An Overview", RADC
Workshop on Al and DB, Minnowbrook, NY, July, 1986.

(23) Hirschman, L., "Natural Language Interfaces to Databases Revisited",
RADC Workshop on Al and DB, Minnowbrook, NY, July, 1986.

(24) Hirschman, L., and Grishman, R. "PROTEUS and PUNDIT: Research in
Text Understanding’, Computational Linguisties, Volume 12, No. 2, April-
June, 1986, pp. 141-145.

(25) Hirschman, Lynette. "Natural Language Interfaces for Large Scale Infor-
mation Processing”. In Integration of Information Systems: Bridging Hetero-
geneous Databases, ed. A. Gupta, IEEE Press, New York, 1989, pp. 308-314.

(26) Hirschman, Lynette, "Tutorial on Natural Language and Logic Program-
ming”. 1987 Logic Programming Symposium, San Francisco, Aug. 31-Sept.
4, 1987.

(27) Hirschman, Lynette Deborah Dahl, John Dowding. Francois Lang, Marcia
Linebarger, Martha Palmer. Leslie Rile, Rebecca assonneau] Schiffman,

DARPA Final Report -64- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

"The PUNDIT Natural Language Processing System". Presented at the
Eleventh Annual Penn Linguistics Colloquium, Philadelphia, PA, February,
1987.

(28) Hirschman, L. "A Meta-Treatment of Wh-Constructions”". METASS:
Proceedings of the Workshop on Meta-Programming in Logic Programming,
June, 1988.

(29) Hirschman, L., Hopkins, W.C., Smith, R.C. "Or-Parallel Speed-up in
Natural Language Processing: A Case Study". Proc. of the 5th International
Logic Programming Conference, eds. R. Kowalski and K. Bowen, Seattle,
August, 1988, pp. 263-279.

(30) Hirschman, L., M. Palmer, J. Dowding, D. Dahl, M. Linebarger, R. Passon-
neau, F-M. Lang, C. Ball, and C. Weir. "The Pundit Natural Language
System", In Proceedings of the Conference on Artificial Intelligence in
Government, Washington, D.C. March, 1989, pp. 234-243.

(31) Hirschman, L., F-M Lang, J. Dowding and C. Weir. "Porting PUNDIT to
the Resource Management Domain". In Proceedings of the DARPA
Workshop on Speech and Natural Language, March 1989.

(32) Hirschman, L. "Computational Requirements for Spoken Language Sys-
tems". Presented at the Workshop on Logic Programming and Natural
Language Processing, Stockholm, Sweden, April 1989.

(33) Hirschman, L., "Computational Requirements for a Spoken Language Sys-
tem". To be presented at the Darpa contractors’ meeting, October, 1989.

(34) Hirschman, L., and Dowding, J. "Restriction Grammar: A Logic Grammar",
to appear in Logic and Logic Grammars for Language Processing,, edited by
Stan Szpakowicz and Patrick St. Dizier, Ellis Horwood, LTD.

(35) Hopkins, W., Hirschman, L., and Smith, R. "Or-Parallelism in Natural
Language Parsing”, to appear in Parallel Algorithms for Machine Intells-
gence and Pattern Recognition, eds., V. Kuman, P.S. Gopalkrishman, and
L. Kanal, Springer-Verlag, New York, 1990.

(36) Lang, Francois-Michel. Intersentential Cancellation of Scalar Implicature:
In Theory and In Fact. Presented at the Eleventh Annual Penn Linguistics
Colloquium, Philadelphia, PA, February, 1987.

(37) Lang, Francois. "A User’s Guide to the Selection Module". LBS Technical
Memo No. 68. Paoli Research Center, 1987.

(38) Lang, Francois, and Hirschman, Lynette. "Improved Parsing through
Interactive Acquisition of Selectional Patterns”. LBS Technical Memo No.
69, Paoli Research Center, 1987.

(39) Lang, F. "The PUNDIT Text-Understanding System: Approaches to
Domain Portability”. Invited talk presented at Carnegie-Mellon University,
May 25, 1988.

DARPA Final Report ~-65- September 28, 1989

Unlsys Defense Systems Integrating Syntax, Semantics. Discourse

(40) Lang, F., and Hirschman, L."Improved Portability and Parsing Through
Interactive Acquisition of Semantic Information'. Proceedings of the
Second Conference on Applied Natural Language Processing, Austin, Texas,
February, 1988.

(41) Lang, Francois. "Pundit’s First French Lesson: The PRATTFALL
Machine-Translation Module”. Presented at the Penn Linguistics Collo-
quium, February 17-18, 1989, and at the PRC AI Seminar, February 15,
1989.

(42) Linebarger, M. "Neuropsychological Evidence for Linguistic Modularity.” in
Studses sn Theoretical Psycholinguistics, G. Carlson and M. Tanenhaus, eds.
(to appear).

(43) Linebarger, M. "Neuropsychology of Sentence Parsing.” in Advances in Cog-
nitive Neuropsychology. (to appear).

(44) Linebarger, Marcia C. "Negative Polarity and Grammatical Representa-
tion". Linguistics and Philosphy. Vol. 10. no. 3, August, 1987.

(45) Linebarger, M. "A Guide to Object Options in PUNDIT". LBS Technical
Report, July, 1988.

(46) Linebarger, M., Dahl, D., Hirschman, L., and Passonneau, R. "Sentence
Fragments Regular Structures”. Proceedings of the 26th Annual Meeting of
the Association for Computational Lingusstics. Buffalo, June, 1988.

(47) Palmer, M. Driving Semantics for a Limited Domain. Ph.D. thesis, Univer-
sity of Edinburgh. July, 1985.

(48) Palmer, M., Dahl, D., Schiffman, R., Hirschman, L., Linebarger, M., and
Dowding, J. "Recovering Implicit Information", Proceedings of the 24th
Meeting of the Association for Computational Lingusstics, June, 19886.

(49) Palmer, Martha S. "Natural Language Series,” One of the Artificial Intelli-
gence Short Courses (7 lectures) Televised at the University of Maryland,
Instructional Television System, January, 1987.

(50) Palmer, Martha. "Developing and Porting a Text Processor”. Invited talk
presented at Bell Labs, December 11, 1987.

(51) Palmer, Martha S. Semantic Processing for Finite Domains, to appear as a
volume in Studies in Natural Language Processing, Cambridge University
Press, editor, Aravind Joshi, 1988.

(52) Palmer, M., and Linebarger, M. "Status of Verb Representations in PUN-
DIT". Presented at Theoretical And Computational Issues in Lexical
Semantics, Brandeis University, Waltham, Mass, April 21-24, 1988.

(53) Passonneau, Rebecca. "Situations and Intervals". Proceedings of the 25th
Annual Meeting of the Association for Computational Linguistics, Stanford,
CA., July, 1987.

DARPA Final Report -66- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

(54) Passonneau, R. "A Computational Model of the Semantics of Tense and
Aspect”. Computational Linguistics, vol. 14, no. 2, June, 1988.

(55) Passonneau, R. "Getting at Discourse Referents". Proc. of the 27th Annual
Meeting of the Association for Computational Linguistics, Vancouver, June,
1989.

(56) Passonneau, R., Weir, C., and Finin, T. "Interfacing Natural Language
Processing and Knowledge-based Processing in PUNDIT". To be presented
at the Darpa contractors’ meeting, October, 1989.

(57) Pierrehumbert, Janet, and Steele, Shirley. “"Categories of Tonal Alignment
in English". To appear in Phonetica.

(58) Riley, L. "A Guide to the PUNDIT Lexical Entry Procedure”. LBS Techni-
cal Report, July, 1988.

(59) Schwartz, M., Linebarger, M., Saffran, E., & D.S. Pate. Syntactic tran-
sparency and sentence interpretation in aphasia. Language and Cognitive
Processes, Vol. 2, no. 2, pp 85-113.

(60) Sproat, Richard, and Steele, Shirley. "An Investigation of Tag Intonation in
English". Presented at the November Meeting of the Acoustical Society of
America.

(61) Webber, Bonnie L. "Position Paper: Event Reference”. Proceedings of
TINLAP-8, Theoretical Issues sn Natural Language Processing. Yorick
Wilkes, ed., January, 1987.

(862) Webber, Bonnie L. "The Interpretation of Tense in Discourse”. Proceedings
of the 25th Annual Meeting of the Association for Computational Linguis-
tics, Stanford, CA., July, 1987.

(63) Weir, C. "Semantic Properties of English Gerundives”. Invited talk
presented to LiLog KI-Kolloquium, IBM Germany, Stuttgart, Germany,
September 16, 1988.

DARPA Final Report -87- September 28, 1989

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

21. REFERENCES

(1] Strategic Computing -- New Generation Computing Technology:, A Strategic Plan
for its Development and Application to Critical Problems in Defense, Defense Ad-
vanced Research Projects Agency, October, 1983.

[2] C. Ball, Analysing explicitly-structured discourse in a limited domain: trouble and
failure reports. In Proceedings of the DARPA Workshop on Speech and Language,
March 1989.

[3) R.Brachman and J. G. Schmolse, An Overview of the KL-ONE Knowledge Represen-
tation System. Cognitive Science 9, 1985, pp. 171-261.

(4] D. Dahl and C. Ball, Reference Resolution in PUNDIT. In Logie and Logic Grammars
for Language Processing, S. Szpakowice and P. Saint-Dizier (ed.), Ellis Horwood, 1990.

[5] Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT, Presented at
AAAI, Philadelphia, PA, 1986,

[6] Deborah A. Dahl, Martha S. Palmer, and Rebecca J. Passonneau, Nominalizations in

PUNDIT, Proceedings of the *5th Annual Meeting of the ACL, Stanford, CA, July,
1987.

(7] Deborah A. Dahl, John Dowding, Lynette Hirschman, Francois Lang, Marcia Line-
barger, Martha Palmer, Rebecca Passonneau, and Leslie Riley, Integrating Syntax,
Semantics, and Discourse: DARPA Natural Language Understanding Program, R&D
Status Report, Paoli Research Center, Unisys Defense Systems, May 14, 1987.

[8] John Dowding and Lynette Hirschman, Dynamic Translation for Rule Pruning in Res-
triction Grammar, Presen[Bted at the 2nd International Workshop on Natural
Language Understanding and Logic Programming, Vancouver, B.C., Canada, 1987.

[9] J. Dowding, A continuation based parser for restrictions, Presented at the Workshop
on Logic Programming and Natural Language Processing , Stockholm, Sweden, April
1989.

[i0] T. Finin, R. Fritsson, and D. Matussek, Adding Forward Chaining and Truth Mainte-
nance to Prolog. In Proc. of the 5th Conference on Artificial Intelligence, March 1989.

(11] Michael W. Freeman, KNET: An Eztended SI-Net Formalism for Knowledge Represen-
tation Systems. TR . IM-80.1, ADO/FSSG, Burroughs Corporation, Paoli, PA, Janu-
ary, 1980.

(12] Z. Harris, String Analysis of Sentence Structure, The Hague, 1962.
(13] B. Hausman, A. Ciepielewski, and S. Haridi, OR-Parallel Prolog Made Efficient on

Shared Memory Multiprocessors. In Proc. of the 1987 Symposium on Logie Program-
ming, San Francisco, 1987, pp. 69-79.

(14] L. Hirschman and K. Puder, Restriction Grammar: A Prolog Implementation. In Logic
Programming and its Applications, DH.D. Warren and M. VanCaneghem (ed.), Ablex
Publishing Corp., Norwood, N.J., 1986, pp. 244-261.

[15] L. Hirschman, Conjunction in Meta-Restriction Grammar. J. of Logic Program-
ming 8(4), 1986, pp. 299-328.

(18] L. Hirschman, W. Hopkins, and R. Smith, Or-Parallel Speed-up in Natural Language
Processing: A Case Study. In Proc. of the 5th International Leogic Programming Confer-
ence, R. Kowalski and K. Bowen (ed.), Seattle, August 1988, pp. 263-279.

(17] L. Hirschman, A Meta-Treatment of Wh-Constructions. In Meta88: Proc. of the
Workshop on Meta-Programming sn Logic Programming, Bristol, UK., June 1988.

DARPA Final Report -68- September 28, 1989

—

Unisys Defense Systems Integrating Syntax, Semantics, Discourse

(18] L. Hirschman, F. Lang, J. Dowding, and C. Weir, Porting PUNDIT to the Resource
Management Domain. In Proceedings of the DARPA Workshop on Speech and Natural
Language, March 1989.

[19] W. Hopkins, L. Hirschman, and R. Smith, Or-Parallelism in Natural Language
Parsing. In Parallel Algorithms for Machine Intelligence and Pattern Recognition, V.
Kuman, P.5. Gopalkrishman, and L. Kanal (ed.), Spring-Verlag, New York, 1990.

[20] F. Lang and L. Hirschman, Improved Portability and Parsing Through Interactive
Acquisition of Semantic Information. In Proceedings of the Second Conference on Ap-
plied Natural Language Processing, Austin, TX, February 1988.

[21] M. C. Linebarger, D. A. Dahl, L. Hirschman, and R. J. Passonneau, Sentence Frag-
ments Regular Structures. Proc. of the £6th ACL Conference, June, 1988,

[22] D. Matussek, A Programmer’s Interface to KNET, Technical Memo 61, Paoli
Reseach Center, Unisys Corporation, October 1987,

[23] Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D. thesis, University
of Edinburgh, 1985.

(24] Martha S. Palmer, Deborah A. Dahl, Rebecca J. [Passonneau] Schiffman, Lynette
Hirschman, Marcia Linebarger, and John Dowding, Recovering Implicit Information,
Presented at the 24th Annual Meeting of the Association for Computational Linguis-
tics, Columbia University, New York, August 1988,

[25] Rebecca J. Passonneau, Situations and Intervals, Presented at the 25th Annual Meet-
ing of the Association for Computational Linguistics, Stanford University, Califor-
nia, July 1987.

[26] Rebecca J. Passonneau, A Computational Model of the Semantics of Tense and
Aspect. Computational Linguistics 14(2), June 1988, pp. 44-60.

DARPA Final Report -69- September 28, 1989

